This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A207870 #13 Jun 27 2025 00:45:18 %S A207870 6,10,14,16,23,26,35,37,42,51,57,60,68,74,83,90,92,97,106,110,116,120, %T A207870 127,132,134,146,149,157,163,172,178,184,188,192,194,206,214,217,234, %U A207870 236,241,250,254,260,264,271,276,278,288,294,298,302,304,311 %N A207870 Numbers k matched to Zeckendorf polynomials divisible by x+1. %C A207870 The Zeckendorf polynomials Z(x,k) are defined and ordered at A207813. %e A207870 The first ten Zeckendorf polynomials are 1, x, x^2, x^2 + 1, x^3, x^3 + 1, x + x^3, x^4, 1 + x^4, x + x^4; their values at x=-1 are 1, -1, 1, 2, -1, 0, -2, 1, 2, 0, indicating initial terms for A207869 and this sequence. %t A207870 fb[n_] := Block[{k = Ceiling[Log[GoldenRatio, n*Sqrt[5]]], %t A207870 t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], %t A207870 AppendTo[fr, 1]; t = t - Fibonacci[k], %t A207870 AppendTo[fr, 0]]; k--]; fr]; t = Table[fb[n], %t A207870 {n, 1, 500}]; %t A207870 b[n_] := Reverse[Table[x^k, {k, 0, n}]] %t A207870 p[n_, x_] := t[[n]].b[-1 + Length[t[[n]]]] %t A207870 Table[p[n, x], {n, 1, 40}] %t A207870 Table[p[n, x] /. x -> 1, {n, 1, 120}] (* A007895 *) %t A207870 Table[p[n, x] /. x -> 2, {n, 1, 120}] (* A003714 *) %t A207870 Table[p[n, x] /. x -> 3, {n, 1, 120}] (* A060140 *) %t A207870 t1 = Table[p[n, x] /. x -> -1, %t A207870 {n, 1, 420}] (* A207869 *) %t A207870 Flatten[Position[t1, 0]] (* this sequence *) %t A207870 t2 = Table[p[n, x] /. x -> I, {n, 1, 420}]; %t A207870 Flatten[Position[t2, 0]] (* A207871 *) %t A207870 Denominator[Table[p[n, x] /. x -> 1/2, {n, 1, 120}]] (* A207872 *) %t A207870 Numerator[Table[p[n, x] /. x -> 1/2, {n, 1, 120}]] (* A207873 *) %Y A207870 Cf. A207813, A207869. %K A207870 nonn %O A207870 1,1 %A A207870 _Clark Kimberling_, Feb 21 2012