This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A207871 #9 Jun 27 2025 00:45:22 %S A207871 4,7,11,18,22,29,33,36,47,51,54,58,76,80,83,87,94,116,123,127,130,134, %T A207871 141,145,152,156,163,174,188,192,199,203,206,210,217,221,228,232,235, %U A207871 246,250,253,264,282,304,311,322,326,329,333,340,344,351,355 %N A207871 Numbers matched to Zeckendorf polynomials divisible by x^2 + 1. %C A207871 The Zeckendorf polynomials Z(x,n) are defined and ordered at A207813. %t A207871 fb[n_] := Block[{k = Ceiling[Log[GoldenRatio, n*Sqrt[5]]], %t A207871 t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], %t A207871 AppendTo[fr, 1]; t = t - Fibonacci[k], %t A207871 AppendTo[fr, 0]]; k--]; fr]; t = Table[fb[n], %t A207871 {n, 1, 500}]; %t A207871 b[n_] := Reverse[Table[x^k, {k, 0, n}]] %t A207871 p[n_, x_] := t[[n]].b[-1 + Length[t[[n]]]] %t A207871 Table[p[n, x], {n, 1, 40}] %t A207871 t2 = Table[p[n, x] /. x -> I, {n, 1, 420}]; %t A207871 Flatten[Position[t2, 0]] (* A207871 *) %t A207871 Denominator[Table[p[n, x] /. x -> 1/2, {n, 1, 120}]] (* A207872 *) %t A207871 Numerator[Table[p[n, x] /. x -> 1/2, {n, 1, 120}]] (* A207873 *) %Y A207871 Cf. A207813. %K A207871 nonn %O A207871 1,1 %A A207871 _Clark Kimberling_, Feb 21 2012