This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A207873 #6 Jul 12 2012 00:40:00 %S A207873 1,1,1,5,1,9,5,1,17,9,5,21,1,33,17,9,41,5,37,21,1,65,33,17,81,9,73,41, %T A207873 5,69,37,21,85,1,129,65,33,161,17,145,81,9,137,73,41,169,5,133,69,37, %U A207873 165,21,149,85,1,257,129,65,321,33,289,161,17,273,145,81,337 %N A207873 Numerator of Z(n,1/2), where Z(n,x) is the n-th Zeckendorf polynomial. %C A207873 The Zeckendorf polynomials Z(x,n) are defined and ordered at A207813. See A207872 for denominators to match A207873. %t A207873 fb[n_] := Block[{k = Ceiling[Log[GoldenRatio, n*Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[fr, 1]; t = t - Fibonacci[k], %t A207873 AppendTo[fr, 0]]; k--]; fr]; t = Table[fb[n], %t A207873 {n, 1, 500}]; %t A207873 b[n_] := Reverse[Table[x^k, {k, 0, n}]] %t A207873 p[n_, x_] := t[[n]].b[-1 + Length[t[[n]]]] %t A207873 Table[p[n, x], {n, 1, 40}] %t A207873 Denominator[Table[p[n, x] /. x -> 1/2, %t A207873 {n, 1, 120}]] (* A207872 *) %t A207873 Numerator[Table[p[n, x] /. x -> 1/2, %t A207873 {n, 1, 120}]] (* A207873 *) %Y A207873 Cf. A207813, A207873. %K A207873 nonn %O A207873 1,4 %A A207873 _Clark Kimberling_, Feb 21 2012