cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A207914 Number of nX4 0..1 arrays avoiding 0 0 0 and 1 0 1 horizontally and 0 1 0 and 1 0 1 vertically.

Original entry on oeis.org

9, 81, 271, 1309, 5371, 23637, 101069, 438103, 1887667, 8151773, 35161937, 151744767, 654767065, 2825582407, 12192964863, 52615498559, 227045509685, 979746980809, 4227807834119, 18243882203687, 78726167982599
Offset: 1

Views

Author

R. H. Hardin Feb 21 2012

Keywords

Comments

Column 4 of A207918

Examples

			Some solutions for n=4
..1..1..1..1....1..0..0..1....0..0..1..1....0..0..1..0....0..1..1..1
..1..1..1..1....1..1..1..1....1..0..0..1....1..1..0..0....1..0..0..1
..1..1..1..1....1..1..1..1....1..1..0..0....1..1..0..0....1..0..0..1
..1..1..0..0....1..0..0..1....1..1..0..0....0..1..0..0....0..0..1..1
		

Formula

Empirical: a(n) = 6*a(n-1) -12*a(n-2) +17*a(n-3) +5*a(n-4) +51*a(n-5) +36*a(n-6) -399*a(n-7) +554*a(n-8) -625*a(n-9) -854*a(n-10) -4016*a(n-11) +210*a(n-12) +9416*a(n-13) +9774*a(n-14) +4886*a(n-15) -6673*a(n-16) -6888*a(n-17) -6416*a(n-18) -2847*a(n-19) -607*a(n-20) +1513*a(n-21) +1902*a(n-22) +1033*a(n-23) +100*a(n-24) -185*a(n-25) -162*a(n-26) -18*a(n-27) +8*a(n-29)

A207913 Number of n X n 0..1 arrays avoiding 0 0 0 and 1 0 1 horizontally and 0 1 0 and 1 0 1 vertically.

Original entry on oeis.org

2, 16, 98, 1309, 21145, 612439, 28188778, 2088382007, 241159388724, 45610488555258, 13703703085638203, 6587710602249205713, 5068113112003743826155, 6252316203337352775508286
Offset: 1

Views

Author

R. H. Hardin Feb 21 2012

Keywords

Comments

Diagonal of A207918

Examples

			Some solutions for n=4
..1..1..0..0....0..0..1..0....0..0..1..1....1..1..1..1....0..0..1..0
..0..0..1..0....0..0..1..0....1..0..0..1....1..1..0..0....1..1..0..0
..0..0..1..1....1..1..0..0....1..0..0..1....0..1..0..0....1..1..0..0
..1..0..0..1....1..1..0..0....0..1..0..0....0..0..1..1....0..1..0..0
		

A207915 Number of nX5 0..1 arrays avoiding 0 0 0 and 1 0 1 horizontally and 0 1 0 and 1 0 1 vertically.

Original entry on oeis.org

13, 169, 665, 4181, 21145, 117835, 628945, 3426491, 18496249, 100245749, 542220837, 2935363929, 15884981697, 85980809657, 465353448013, 2518713741947, 13632152020691, 73782337553115, 399336601092133, 2161360508723247
Offset: 1

Views

Author

R. H. Hardin Feb 21 2012

Keywords

Comments

Column 5 of A207918

Examples

			Some solutions for n=4
..0..1..0..0..1....1..1..0..0..1....0..1..1..0..0....1..0..0..1..1
..1..0..0..1..0....1..0..0..1..0....1..0..0..1..0....1..0..0..1..0
..1..0..0..1..0....0..0..1..1..0....1..0..0..1..0....1..0..0..1..0
..0..1..1..0..0....0..1..1..0..0....1..0..0..1..1....0..1..0..0..1
		

Formula

Empirical: a(n) = 8*a(n-1) -23*a(n-2) +36*a(n-3) +59*a(n-4) +6*a(n-5) +453*a(n-6) -1612*a(n-7) +4226*a(n-8) -5501*a(n-9) -6341*a(n-10) -34080*a(n-11) -23425*a(n-12) +113542*a(n-13) +108634*a(n-14) +271953*a(n-15) -156132*a(n-16) -31341*a(n-17) -282974*a(n-18) -592411*a(n-19) -1006613*a(n-20) -2028890*a(n-21) -17141*a(n-22) +1219258*a(n-23) +3746047*a(n-24) +3773602*a(n-25) +5395370*a(n-26) +6760362*a(n-27) +4893258*a(n-28) +1462761*a(n-29) -1479940*a(n-30) -2078173*a(n-31) -3026258*a(n-32) -3979297*a(n-33) -2271787*a(n-34) -133305*a(n-35) +868458*a(n-36) +575128*a(n-37) +428604*a(n-38) +374914*a(n-39) +106489*a(n-40) -75453*a(n-41) -98387*a(n-42) -22882*a(n-43) +8071*a(n-44) +6997*a(n-45) +366*a(n-46) -348*a(n-47) -99*a(n-48) +22*a(n-49) -2*a(n-50)

A207916 Number of nX6 0..1 arrays avoiding 0 0 0 and 1 0 1 horizontally and 0 1 0 and 1 0 1 vertically.

Original entry on oeis.org

19, 361, 1675, 13759, 86255, 612439, 4105063, 28280693, 192317491, 1315659479, 8974817871, 61305336781, 418503254641, 2857795269701, 19511966375659, 133229220360041, 909670357985593, 6211195191847723, 42409515649083757
Offset: 1

Views

Author

R. H. Hardin Feb 21 2012

Keywords

Comments

Column 6 of A207918

Examples

			Some solutions for n=4
..0..0..1..1..1..0....1..0..0..1..0..0....0..1..1..0..0..1....1..1..1..0..0..1
..1..0..0..1..1..0....0..1..1..1..0..0....0..0..1..1..1..1....1..1..0..0..1..0
..1..0..0..1..1..0....0..1..1..1..0..0....1..0..0..1..1..1....1..0..0..1..1..0
..1..1..0..0..1..1....0..1..0..0..1..0....1..1..0..0..1..1....0..0..1..1..0..0
		

A207917 Number of nX7 0..1 arrays avoiding 0 0 0 and 1 0 1 horizontally and 0 1 0 and 1 0 1 vertically.

Original entry on oeis.org

28, 784, 4344, 46800, 366330, 3327954, 28188778, 247024548, 2129817756, 18503218016, 160144863388, 1388528077986, 12029107363320, 104255340840714, 903395668109660, 7828846025215230, 67841580292509632, 587899815684673466
Offset: 1

Views

Author

R. H. Hardin Feb 21 2012

Keywords

Comments

Column 7 of A207918

Examples

			Some solutions for n=4
..0..0..1..1..0..0..1....1..0..0..1..1..1..1....1..0..0..1..0..0..1
..0..1..0..0..1..0..0....1..1..1..0..0..1..0....1..0..0..1..1..1..0
..0..1..0..0..1..1..0....1..1..1..0..0..1..0....0..1..0..0..1..1..0
..1..1..0..0..1..1..0....1..1..1..0..0..1..1....0..1..0..0..1..1..1
		

A207919 Number of 4Xn 0..1 arrays avoiding 0 0 0 and 1 0 1 horizontally and 0 1 0 and 1 0 1 vertically.

Original entry on oeis.org

10, 100, 358, 1309, 4181, 13759, 46800, 156135, 518564, 1734968, 5800213, 19351425, 64616191, 215842982, 720736677, 2406625466, 8036934640, 26838643787, 89622848751, 299284174725, 999425753876, 3337450100119, 11144976639396
Offset: 1

Views

Author

R. H. Hardin Feb 21 2012

Keywords

Comments

Row 4 of A207918

Examples

			Some solutions for n=4
..0..0..1..1....1..0..0..1....0..1..0..0....0..1..1..0....1..1..0..0
..0..1..0..0....1..1..1..1....0..0..1..0....0..1..1..1....1..0..0..1
..0..1..0..0....1..1..1..1....0..0..1..1....0..1..1..1....0..0..1..1
..0..1..0..0....1..0..0..1....0..1..1..1....0..1..1..1....0..0..1..0
		

Formula

Empirical: a(n) = a(n-1) +2*a(n-2) +18*a(n-3) +15*a(n-4) -6*a(n-5) -70*a(n-6) -96*a(n-7) -14*a(n-8) +154*a(n-9) +147*a(n-10) -113*a(n-12) -71*a(n-13) -9*a(n-14) +33*a(n-15) +12*a(n-16) -a(n-17) -7*a(n-18) +3*a(n-19) +a(n-20) +2*a(n-21) for n>22

A207920 Number of 5Xn 0..1 arrays avoiding 0 0 0 and 1 0 1 horizontally and 0 1 0 and 1 0 1 vertically.

Original entry on oeis.org

16, 256, 1152, 5371, 21145, 86255, 366330, 1520815, 6276388, 26127518, 108694123, 451081599, 1873587315, 7785944494, 32343169917, 134348128428, 558128458658, 2318624670321, 9631925841375, 40012938910533, 166222764096548
Offset: 1

Views

Author

R. H. Hardin Feb 21 2012

Keywords

Comments

Row 5 of A207918

Examples

			Some solutions for n=4
..0..0..1..1....0..1..1..0....0..0..1..1....1..1..0..0....1..1..0..0
..1..1..0..0....0..0..1..1....0..1..0..0....1..1..1..1....1..0..0..1
..1..1..0..0....0..0..1..1....0..1..0..0....0..0..1..1....0..0..1..1
..1..0..0..1....0..0..1..1....0..1..0..0....0..0..1..0....0..1..1..1
..0..0..1..1....0..1..0..0....0..1..1..0....1..1..1..0....0..1..0..0
		

Formula

Empirical: a(n) = a(n-1) +2*a(n-2) +37*a(n-3) +59*a(n-4) +24*a(n-5) -269*a(n-6) -770*a(n-7) -667*a(n-8) +1180*a(n-9) +3322*a(n-10) +2975*a(n-11) -1689*a(n-12) -6648*a(n-13) -6577*a(n-14) -387*a(n-15) +5843*a(n-16) +7354*a(n-17) +3010*a(n-18) -2018*a(n-19) -3068*a(n-20) -2386*a(n-21) +556*a(n-22) +777*a(n-23) +764*a(n-24) -259*a(n-25) -552*a(n-26) -503*a(n-27) -97*a(n-28) +10*a(n-29) +168*a(n-30) +19*a(n-31) +51*a(n-32) -19*a(n-33) +10*a(n-34) -3*a(n-35) +3*a(n-36) for n>38

A207921 Number of 6Xn 0..1 arrays avoiding 0 0 0 and 1 0 1 horizontally and 0 1 0 and 1 0 1 vertically.

Original entry on oeis.org

26, 676, 3910, 23637, 117835, 612439, 3327954, 17621905, 92785236, 493226298, 2618710999, 13869205695, 73534808659, 390043559718, 2067950383577, 10964045099346, 58137529835416, 308266004747279, 1634495531671201
Offset: 1

Views

Author

R. H. Hardin Feb 21 2012

Keywords

Comments

Row 6 of A207918

Examples

			Some solutions for n=4
..0..0..1..1....0..1..0..0....0..1..0..0....1..0..0..1....0..0..1..1
..1..0..0..1....0..1..0..0....1..0..0..1....0..1..1..0....0..0..1..1
..1..1..0..0....0..1..0..0....1..0..0..1....0..1..1..0....1..1..1..1
..1..1..0..0....1..0..0..1....0..0..1..0....1..1..1..1....1..1..1..1
..1..1..1..1....1..0..0..1....0..1..1..0....1..1..1..1....0..1..1..0
..0..0..1..1....0..0..1..0....0..1..0..0....0..1..0..0....0..0..1..0
		

Formula

Empirical: a(n) = a(n-1) +7*a(n-2) +84*a(n-3) +162*a(n-4) -211*a(n-5) -2539*a(n-6) -6869*a(n-7) -1500*a(n-8) +43337*a(n-9) +118112*a(n-10) +64060*a(n-11) -388208*a(n-12) -1086391*a(n-13) -826341*a(n-14) +1897949*a(n-15) +5944507*a(n-16) +5846146*a(n-17) -4239578*a(n-18) -20302409*a(n-19) -24744608*a(n-20) -416618*a(n-21) +41293114*a(n-22) +62640453*a(n-23) +25458037*a(n-24) -47567000*a(n-25) -93157981*a(n-26) -52063069*a(n-27) +28324666*a(n-28) +87341962*a(n-29) +30300393*a(n-30) -22313684*a(n-31) -74160954*a(n-32) +31894815*a(n-33) +32122983*a(n-34) +107210353*a(n-35) -88336649*a(n-36) +6535109*a(n-37) -157060363*a(n-38) +124419889*a(n-39) -85357841*a(n-40) +161199662*a(n-41) -144742778*a(n-42) +120357887*a(n-43) -117132939*a(n-44) +122521503*a(n-45) -82460666*a(n-46) +59827267*a(n-47) -66607410*a(n-48) +31225295*a(n-49) -22660395*a(n-50) +22092687*a(n-51) -6699063*a(n-52) +6991080*a(n-53) -3497192*a(n-54) +942478*a(n-55) -1619789*a(n-56) -288168*a(n-57) -224812*a(n-58) +139695*a(n-59) +220677*a(n-60) +47594*a(n-61) +49190*a(n-62) -26558*a(n-63) +4246*a(n-64) -12332*a(n-65) -1512*a(n-66) -2071*a(n-67) +147*a(n-68) +176*a(n-69) +170*a(n-70) +32*a(n-71) +14*a(n-72) +14*a(n-73) -6*a(n-74) for n>76

A207922 Number of 7Xn 0..1 arrays avoiding 0 0 0 and 1 0 1 horizontally and 0 1 0 and 1 0 1 vertically.

Original entry on oeis.org

42, 1764, 12994, 101069, 628945, 4105063, 28188778, 187980955, 1245595210, 8342244698, 55794408879, 372138707621, 2485175186365, 16603501309984, 110873077840653, 740391497518318, 4944900311857882, 33024243581797845
Offset: 1

Views

Author

R. H. Hardin Feb 21 2012

Keywords

Comments

Row 7 of A207918

Examples

			Some solutions for n=4
..1..0..0..1....1..0..0..1....0..1..0..0....0..1..1..0....0..1..0..0
..0..1..1..0....1..0..0..1....1..1..1..0....0..0..1..0....0..0..1..0
..0..1..1..0....0..0..1..1....1..1..1..1....0..0..1..1....0..0..1..0
..1..1..1..1....0..1..1..0....1..0..0..1....1..0..0..1....1..0..0..1
..1..0..0..1....0..1..0..0....1..0..0..1....1..1..0..0....1..0..0..1
..1..0..0..1....1..0..0..1....0..0..1..0....0..1..1..0....1..0..0..1
..1..1..1..0....1..0..0..1....0..0..1..0....0..1..1..0....1..0..0..1
		
Showing 1-9 of 9 results.