cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A207924 Number of n X 4 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 0 and 1 1 1 vertically.

Original entry on oeis.org

9, 81, 144, 576, 1936, 6400, 21904, 73984, 250000, 846400, 2862864, 9684544, 32764176, 110838784, 374964496, 1268499456, 4291298064, 14517358144, 49111878544, 166144281664, 562062085264, 1901442429184, 6432533627536
Offset: 1

Views

Author

R. H. Hardin, Feb 21 2012

Keywords

Comments

Column 4 of A207928.
It seems that all terms are squares. - Colin Barker, Mar 06 2018

Examples

			Some solutions for n=8:
..0..1..1..0....1..0..0..1....1..0..0..1....1..0..1..1....0..1..1..0
..1..0..0..1....0..1..1..0....0..1..1..0....0..0..1..1....0..1..1..1
..1..1..1..1....1..0..1..1....0..0..1..1....1..1..0..0....1..0..0..1
..0..1..1..0....1..1..0..1....1..0..0..1....1..0..1..1....0..1..1..0
..1..0..0..1....0..1..1..0....1..1..0..0....0..0..1..1....0..1..1..1
..1..0..1..1....0..0..1..1....0..1..1..0....1..1..0..0....1..0..0..1
..0..1..1..0....1..1..0..1....0..0..1..1....1..0..1..1....1..1..1..0
..1..1..0..1....1..1..1..0....1..0..0..1....0..1..1..1....0..1..1..1
		

Crossrefs

Cf. A207928.

Formula

Empirical: a(n) = 2*a(n-1) + 3*a(n-2) + 6*a(n-3) - a(n-4) - a(n-6) for n>8.
Empirical g.f.: x*(9 + 63*x - 45*x^2 - 9*x^3 - 125*x^4 + 17*x^5 - 7*x^6 + 17*x^7) / ((1 + x + x^2 - x^3)*(1 - 3*x - x^2 - x^3)). - Colin Barker, Mar 06 2018

A207923 Number of n X n 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 0 and 1 1 1 vertically.

Original entry on oeis.org

2, 16, 72, 576, 7744, 138384, 3773248, 143233024, 7961867964, 694232238436, 87251969161984, 15584659071915024, 4290136697951345984, 1785288592992685527184, 1059504761310616996153800
Offset: 1

Views

Author

R. H. Hardin Feb 21 2012

Keywords

Comments

Diagonal of A207928

Examples

			Some solutions for n=5
..0..0..1..1..1....1..0..0..1..1....1..0..1..1..1....0..0..1..1..1
..0..0..1..1..0....1..0..1..1..0....1..0..0..1..1....0..1..1..0..0
..1..1..0..0..1....0..1..1..0..1....0..1..1..0..0....1..0..0..1..1
..0..0..1..1..0....1..0..0..1..1....0..0..1..1..0....0..0..1..1..1
..1..0..1..1..1....1..1..1..0..0....1..1..0..0..1....1..1..1..0..0
		

A207925 Number of nX5 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 0 and 1 1 1 vertically.

Original entry on oeis.org

15, 225, 360, 1872, 7744, 29760, 126688, 520608, 2103000, 8741840, 35823024, 146214208, 604202544, 2474564288, 10137402552, 41768664000, 171129168720, 702148157568, 2888077723232, 11839454522224, 48607631557944
Offset: 1

Views

Author

R. H. Hardin Feb 21 2012

Keywords

Comments

Column 5 of A207928

Examples

			Some solutions for n=6
..1..0..1..1..0....0..0..1..1..0....0..1..1..1..1....1..1..0..0..1
..1..1..0..1..1....1..1..0..0..1....1..1..1..0..0....0..0..1..1..1
..0..1..1..0..1....1..0..1..1..1....1..0..0..1..1....0..1..1..0..0
..1..0..1..1..0....0..1..1..1..0....0..0..1..1..1....1..0..0..1..1
..1..1..0..0..1....1..1..0..0..1....0..1..1..0..0....0..0..1..1..1
..0..0..1..1..1....0..0..1..1..0....1..0..0..1..1....1..1..1..0..0
		

Formula

Empirical: a(n) = 3*a(n-2) +63*a(n-3) +12*a(n-4) +21*a(n-5) -749*a(n-6) +34*a(n-7) -343*a(n-8) +3571*a(n-9) -666*a(n-10) +1227*a(n-11) -7816*a(n-12) +1430*a(n-13) -1022*a(n-14) +7504*a(n-15) -771*a(n-16) +78*a(n-17) -3329*a(n-18) +37*a(n-19) +100*a(n-20) +661*a(n-21) +35*a(n-22) -2*a(n-23) -45*a(n-24) -a(n-25) +a(n-27) for n>29

A207926 Number of nX6 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 0 and 1 1 1 vertically.

Original entry on oeis.org

25, 625, 900, 6084, 30976, 138384, 732736, 3663396, 17690436, 90288004, 448253584, 2207496256, 11142069136, 55246622116, 274071096324, 1375342562500, 6824320275600, 33960175831296, 169836568722496, 843680456407684
Offset: 1

Views

Author

R. H. Hardin Feb 21 2012

Keywords

Comments

Column 6 of A207928

Examples

			Some solutions for n=5
..0..0..1..1..1..0....1..1..0..1..1..1....0..1..1..1..1..1....0..1..1..1..1..0
..1..1..0..0..1..1....0..0..1..1..1..0....0..1..1..0..0..1....1..1..1..0..0..1
..0..0..1..1..0..0....0..1..1..0..0..1....1..0..0..1..1..0....1..0..0..1..1..0
..1..1..0..0..1..1....1..1..0..1..1..0....1..0..0..1..1..1....0..1..1..0..1..1
..1..0..0..1..1..1....0..0..1..1..0..1....0..1..1..0..0..1....0..1..1..0..0..1
		

Formula

Empirical: a(n) = a(n-1) +2*a(n-2) +152*a(n-3) -69*a(n-4) +71*a(n-5) -7546*a(n-6) +722*a(n-7) -5058*a(n-8) +150792*a(n-9) +8524*a(n-10) +55962*a(n-11) -1450520*a(n-12) -222090*a(n-13) -207154*a(n-14) +7370978*a(n-15) +1456071*a(n-16) +592939*a(n-17) -21038506*a(n-18) -4409754*a(n-19) -1950603*a(n-20) +34994571*a(n-21) +6780102*a(n-22) +3913498*a(n-23) -34648855*a(n-24) -5264075*a(n-25) -3740202*a(n-26) +20686582*a(n-27) +2023371*a(n-28) +1740765*a(n-29) -7313862*a(n-30) -294498*a(n-31) -352786*a(n-32) +1465632*a(n-33) -12928*a(n-34) +21778*a(n-35) -152676*a(n-36) +6042*a(n-37) +460*a(n-38) +7412*a(n-39) -219*a(n-40) -73*a(n-41) -154*a(n-42) +a(n-44) +a(n-45) for n>47

A207927 Number of nX7 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 0 and 1 1 1 vertically.

Original entry on oeis.org

40, 1600, 2160, 18096, 111584, 592968, 3773248, 22906752, 133271316, 813048132, 4888530112, 29063550656, 175651306248, 1052837316972, 6299856462528, 37944438834000, 227332237482360, 1363281172707168, 8196861050785472
Offset: 1

Views

Author

R. H. Hardin Feb 21 2012

Keywords

Comments

Column 7 of A207928

Examples

			Some solutions for n=4
..1..1..0..0..1..1..0....1..1..1..0..1..1..0....1..0..1..1..0..0..1
..0..0..1..1..0..1..1....1..1..0..0..1..1..1....0..0..1..1..0..0..1
..0..0..1..1..1..0..1....0..0..1..1..0..0..1....1..1..0..0..1..1..0
..1..1..0..0..1..1..0....0..0..1..1..1..1..0....1..1..0..1..1..0..1
		

Formula

Empirical: a(n) = 2*a(n-2) +324*a(n-3) +67*a(n-4) +502*a(n-5) -38375*a(n-6) -3848*a(n-7) -83382*a(n-8) +2437802*a(n-9) -68562*a(n-10) +4989314*a(n-11) -95434239*a(n-12) +12364284*a(n-13) -162122137*a(n-14) +2471203313*a(n-15) -489189928*a(n-16) +3263694308*a(n-17) -44238271761*a(n-18) +10547561267*a(n-19) -43750397922*a(n-20) +565487559359*a(n-21) -145705487190*a(n-22) +410891805612*a(n-23) -5296379959655*a(n-24) +1377358236126*a(n-25) -2804250270970*a(n-26) +37117301639655*a(n-27) -9225071429753*a(n-28) +14250100633447*a(n-29) -197942917527964*a(n-30) +44694380598432*a(n-31) -54657966808665*a(n-32) +814048177397027*a(n-33) -158515128268735*a(n-34) +158840619120166*a(n-35) -2608513402045645*a(n-36) +413174181612720*a(n-37) -347124235677836*a(n-38) +6564473064537785*a(n-39) -786496271351699*a(n-40) +555585040204680*a(n-41) -13051067885839358*a(n-42) +1066183558250649*a(n-43) -603540189342225*a(n-44) +20587154263212708*a(n-45) -953157464506060*a(n-46) +320944137014341*a(n-47) -25839665888298145*a(n-48) +395791594526379*a(n-49) +226070774357061*a(n-50) +25843532883125767*a(n-51) +263201165510079*a(n-52) -712455767014066*a(n-53) -20597554409159894*a(n-54) -613802773501019*a(n-55) +849877689034909*a(n-56) +13063786510926178*a(n-57) +572046632780652*a(n-58) -653345212713089*a(n-59) -6574237359169191*a(n-60) -348536898381054*a(n-61) +354842989147926*a(n-62) +2613376667145323*a(n-63) +153635452153670*a(n-64) -139631404343325*a(n-65) -815624443794211*a(n-66) -51048727664559*a(n-67) +39877616706954*a(n-68) +198275058022842*a(n-69) +13030301687371*a(n-70) -8162247575597*a(n-71) -37162513973679*a(n-72) -2561035113974*a(n-73) +1164487634868*a(n-74) +5299876228241*a(n-75) +381742744600*a(n-76) -109751689496*a(n-77) -565393406955*a(n-78) -41773627002*a(n-79) +6070932129*a(n-80) +44165902889*a(n-81) +3200687276*a(n-82) -126234710*a(n-83) -2462826781*a(n-84) -161830157*a(n-85) -4587212*a(n-86) +95144011*a(n-87) +5023810*a(n-88) +315588*a(n-89) -2440022*a(n-90) -84146*a(n-91) -5800*a(n-92) +38575*a(n-93) +502*a(n-94) +25*a(n-95) -324*a(n-96) +2*a(n-97) +a(n-99) for n>101

A207929 Number of 3 X n 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 0 and 1 1 1 vertically.

Original entry on oeis.org

6, 36, 72, 144, 360, 900, 2160, 5184, 12528, 30276, 73080, 176400, 425880, 1028196, 2482272, 5992704, 14467680, 34928100, 84323880, 203575824, 491475528, 1186526916, 2864529360, 6915585600, 16695700560, 40306986756, 97309674072
Offset: 1

Views

Author

R. H. Hardin, Feb 21 2012

Keywords

Comments

Row 3 of A207928.

Examples

			Some solutions for n=10:
..1..1..0..1..1..1..0..1..1..0....1..0..1..1..0..1..1..1..1..1
..0..0..1..1..0..0..1..1..0..0....1..0..0..1..1..0..1..1..0..0
..0..1..1..0..1..1..1..0..0..1....0..1..1..0..1..1..0..0..1..1
		

Crossrefs

Cf. A207928.

Formula

Empirical: a(n) = 2*a(n-1) + 2*a(n-3) + a(n-4) for n>5.
Empirical g.f.: 6*x*(1 + 4*x - 2*x^3 - x^4) / ((1 + x^2)*(1 - 2*x - x^2)). - Colin Barker, Jun 26 2018

A207930 Number of 4Xn 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 0 and 1 1 1 vertically.

Original entry on oeis.org

10, 100, 240, 576, 1872, 6084, 18096, 53824, 165648, 509796, 1542240, 4665600, 14251680, 43533604, 132223920, 401601600, 1223922960, 3730033476, 11344617648, 34503805504, 105068389776, 319946347044, 973567075392, 2962474361856
Offset: 1

Views

Author

R. H. Hardin Feb 21 2012

Keywords

Comments

Row 4 of A207928

Examples

			Some solutions for n=8
..1..0..1..1..1..0..0..1....0..1..1..0..1..1..1..0....0..1..1..0..1..1..0..1
..0..0..1..1..0..1..1..0....1..1..1..0..0..1..1..1....0..1..1..0..0..1..1..0
..1..1..0..0..1..1..1..0....1..0..0..1..1..0..0..1....1..0..0..1..1..0..1..1
..1..0..1..1..1..0..0..1....0..0..1..1..1..1..1..0....0..1..1..0..1..1..0..1
		

Formula

Empirical: a(n) = a(n-1) -a(n-2) +8*a(n-3) +34*a(n-4) +14*a(n-5) +42*a(n-6) -42*a(n-8) -14*a(n-9) -34*a(n-10) -8*a(n-11) +a(n-12) -a(n-13) +a(n-14) for n>15

A207931 Number of 5Xn 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 0 and 1 1 1 vertically.

Original entry on oeis.org

16, 256, 704, 1936, 7744, 30976, 111584, 401956, 1513992, 5702544, 20899776, 76597504, 286890560, 1074528400, 3949990000, 14520250000, 54270790000, 202842144400, 746941718600, 2750522740900, 10264894414720, 38308375269376
Offset: 1

Views

Author

R. H. Hardin Feb 21 2012

Keywords

Comments

Row 5 of A207928

Examples

			Some solutions for n=6
..1..0..1..1..1..0....1..1..0..0..1..1....1..1..1..1..0..0....0..0..1..1..1..1
..1..1..0..1..1..0....1..1..0..0..1..1....1..0..0..1..1..0....1..1..1..0..0..1
..0..1..1..0..0..1....0..0..1..1..0..0....0..1..1..0..0..1....1..0..0..1..1..0
..1..0..1..1..0..1....0..1..1..0..1..1....1..0..0..1..1..0....0..1..1..1..1..0
..1..0..0..1..1..0....1..0..0..1..1..0....1..1..1..0..1..1....0..1..1..0..0..1
		

Formula

Empirical: a(n) = 3*a(n-2) +4*a(n-3) +219*a(n-4) +44*a(n-5) -649*a(n-6) -332*a(n-7) -11289*a(n-8) -2856*a(n-9) +35419*a(n-10) +11000*a(n-11) +223800*a(n-12) +64536*a(n-13) -768480*a(n-14) -179992*a(n-15) -1832888*a(n-16) -628056*a(n-17) +7644944*a(n-18) +1553576*a(n-19) +4884248*a(n-20) +2725688*a(n-21) -36166848*a(n-22) -7027176*a(n-23) +9071662*a(n-24) -4493576*a(n-25) +77400798*a(n-26) +15843696*a(n-27) -60481962*a(n-28) -60481962*a(n-30) -15843696*a(n-31) +77400798*a(n-32) +4493576*a(n-33) +9071662*a(n-34) +7027176*a(n-35) -36166848*a(n-36) -2725688*a(n-37) +4884248*a(n-38) -1553576*a(n-39) +7644944*a(n-40) +628056*a(n-41) -1832888*a(n-42) +179992*a(n-43) -768480*a(n-44) -64536*a(n-45) +223800*a(n-46) -11000*a(n-47) +35419*a(n-48) +2856*a(n-49) -11289*a(n-50) +332*a(n-51) -649*a(n-52) -44*a(n-53) +219*a(n-54) -4*a(n-55) +3*a(n-56) -a(n-58) for n>59

A207932 Number of 6Xn 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 0 and 1 1 1 vertically.

Original entry on oeis.org

26, 676, 2080, 6400, 29760, 138384, 592968, 2540836, 11151624, 48944016, 213853728, 934402624, 4090548624, 17907257124, 78350974272, 342814934016, 1500522625152, 6567882332944, 28741775057096, 125777167061764
Offset: 1

Views

Author

R. H. Hardin Feb 21 2012

Keywords

Comments

Row 6 of A207928

Examples

			Some solutions for n=5
..1..1..0..0..1....0..1..1..0..0....0..1..1..0..1....1..1..0..1..1
..0..0..1..1..1....1..0..0..1..1....1..0..0..1..1....1..1..0..0..1
..0..1..1..0..0....0..1..1..0..1....1..1..1..1..0....0..0..1..1..0
..1..0..0..1..1....0..0..1..1..0....0..1..1..0..1....1..1..1..1..0
..0..0..1..1..1....1..0..0..1..1....1..0..0..1..1....1..1..0..0..1
..1..1..1..0..0....0..1..1..0..1....0..0..1..1..0....0..0..1..1..1
		

A207933 Number of 7Xn 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 0 and 1 1 1 vertically.

Original entry on oeis.org

42, 1764, 6216, 21904, 126688, 732736, 3773248, 19430464, 105642128, 574369156, 3050871800, 16205290000, 87703589600, 474654858304, 2537509425088, 13565549724736, 73283287813072, 395888141775844, 2122391971076888
Offset: 1

Views

Author

R. H. Hardin Feb 21 2012

Keywords

Comments

Row 7 of A207928

Examples

			Some solutions for n=4
..1..1..0..0....1..1..1..1....0..0..1..1....0..1..1..0....0..1..1..0
..1..1..0..0....1..1..0..0....1..1..0..0....1..0..1..1....0..1..1..1
..0..0..1..1....0..0..1..1....1..1..1..0....1..1..0..1....1..0..0..1
..1..0..1..1....1..1..0..1....0..0..1..1....0..1..1..0....1..1..0..0
..1..1..0..0....0..1..1..0....1..1..0..1....1..0..0..1....0..1..1..1
..0..0..1..1....0..0..1..1....0..1..1..0....1..1..0..1....1..0..1..1
..1..1..1..1....1..0..0..1....1..0..1..1....0..1..1..0....1..1..0..0
		
Showing 1-10 of 10 results.