cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A207935 Number of n X 5 0..1 arrays avoiding 0 0 1 and 1 0 0 horizontally and 0 0 1 and 1 1 0 vertically.

This page as a plain text file.
%I A207935 #8 Jun 26 2018 06:25:12
%S A207935 14,196,844,2422,5594,11256,20568,34986,56294,86636,128548,184990,
%T A207935 259378,355616,478128,631890,822462,1056020,1339388,1680070,2086282,
%U A207935 2566984,3131912,3791610,4557462,5441724,6457556,7619054,8941282,10440304
%N A207935 Number of n X 5 0..1 arrays avoiding 0 0 1 and 1 0 0 horizontally and 0 0 1 and 1 1 0 vertically.
%C A207935 Column 5 of A207938.
%H A207935 R. H. Hardin, <a href="/A207935/b207935.txt">Table of n, a(n) for n = 1..210</a>
%F A207935 Empirical: a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6).
%F A207935 Conjectures from _Colin Barker_, Jun 26 2018: (Start)
%F A207935 G.f.: 2*x*(7 + 56*x - 61*x^2 + 9*x^3 + 6*x^4 - x^5) / (1 - x)^6.
%F A207935 a(n) = (30 - 149*n + 10*n^2 + 250*n^3 + 65*n^4 + 4*n^5) / 15.
%F A207935 (End)
%e A207935 Some solutions for n=4:
%e A207935 ..0..1..0..1..0....1..1..1..0..1....0..0..0..0..0....1..0..1..1..1
%e A207935 ..1..1..0..1..1....1..1..0..1..0....0..0..0..0..0....0..1..0..1..1
%e A207935 ..1..1..0..1..0....1..1..1..1..1....0..0..0..0..0....0..1..1..1..1
%e A207935 ..1..1..0..1..0....1..1..1..1..1....0..0..0..0..0....0..1..1..1..1
%Y A207935 Cf. A207938.
%K A207935 nonn
%O A207935 1,1
%A A207935 _R. H. Hardin_, Feb 21 2012