cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A207936 Number of n X 6 0..1 arrays avoiding 0 0 1 and 1 0 0 horizontally and 0 0 1 and 1 1 0 vertically.

This page as a plain text file.
%I A207936 #8 Jun 26 2018 09:13:35
%S A207936 22,484,2706,9430,25490,58602,120276,226850,400646,671248,1076902,
%T A207936 1666038,2498914,3649382,5206776,7277922,9989270,13489148,17950138,
%U A207936 23571574,30582162,39242722,49849052,62734914,78275142,96888872
%N A207936 Number of n X 6 0..1 arrays avoiding 0 0 1 and 1 0 0 horizontally and 0 0 1 and 1 1 0 vertically.
%C A207936 Column 6 of A207938.
%H A207936 R. H. Hardin, <a href="/A207936/b207936.txt">Table of n, a(n) for n = 1..210</a>
%F A207936 Empirical: a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7).
%F A207936 Conjectures from _Colin Barker_, Jun 26 2018: (Start)
%F A207936 G.f.: 2*x*(11 + 165*x - 110*x^2 - 59*x^3 + 68*x^4 - 15*x^5 + x^6) / (1 - x)^7.
%F A207936 a(n) = (720 - 1584*n - 6206*n^2 + 7335*n^3 + 6505*n^4 + 1089*n^5 + 61*n^6) / 360.
%F A207936 (End)
%e A207936 Some solutions for n=4:
%e A207936 ..0..0..0..0..0..0....1..1..1..1..1..0....1..1..0..1..1..0....0..0..0..0..0..0
%e A207936 ..0..1..0..1..0..1....0..0..0..0..0..0....1..0..1..0..1..1....0..1..1..1..0..1
%e A207936 ..0..1..0..1..0..1....0..0..0..0..0..0....1..1..1..1..1..1....0..0..0..0..0..0
%e A207936 ..0..1..0..1..0..1....0..0..0..0..0..0....1..1..1..1..1..1....0..0..0..0..0..0
%Y A207936 Cf. A207938.
%K A207936 nonn
%O A207936 1,1
%A A207936 _R. H. Hardin_, Feb 21 2012