cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A207944 Expansion of Product_{i>=1} (1 + x^(2*i + 1))/(1 - x^(2*i + 1)).

This page as a plain text file.
%I A207944 #30 Dec 18 2022 09:26:54
%S A207944 1,0,0,2,0,2,2,2,4,4,6,6,10,10,14,18,20,26,32,38,46,58,66,82,98,116,
%T A207944 138,166,194,230,274,318,376,442,514,602,704,814,950,1102,1274,1474,
%U A207944 1706,1962,2262,2606,2986,3430,3934,4496,5144,5878,6698,7638,8698,9886
%N A207944 Expansion of Product_{i>=1} (1 + x^(2*i + 1))/(1 - x^(2*i + 1)).
%D A207944 George E. Andrews, Number Theory, Dover Publications, N.Y., 1971, 164-165.
%D A207944 Samuel I. Goldberg, Curvature and Homology, Dover, New York, 1998, 144.
%H A207944 Shi-Chao Chen, <a href="https://doi.org/10.1016/j.disc.2014.02.015">On the number of overpartitions into odd parts</a>, Discrete Math. 325 (2014), 32--37. MR3181230. The g.f. occurs on page 32, by accident (the product there should really start at n=0, not 1, in order to give A080054!). - _N. J. A. Sloane_, Apr 24 2014
%F A207944 a(n) ~ exp(sqrt(n/2)*Pi) * Pi / (2^(19/4) * n^(5/4)). - _Vaclav Kotesovec_, Apr 13 2017
%t A207944 nmax = 50; CoefficientList[Series[Product[(1 + x^(2*k + 1))/(1 - x^(2*k + 1)), {k, 1, nmax}], {x, 0, nmax}], x] (* fixed by _Vaclav Kotesovec_, Apr 13 2017 *)
%Y A207944 Cf. A015128, A080054, A142724.
%K A207944 nonn
%O A207944 0,4
%A A207944 _Roger L. Bagula_, Feb 21 2012