A207946 Number of nX5 0..1 arrays avoiding 0 0 1 and 0 1 1 horizontally and 0 1 0 and 1 0 1 vertically.
12, 144, 612, 3478, 18172, 98126, 524104, 2806686, 15013734, 80346942, 429945512, 2300766930, 12311872834, 65883534740, 352556938048, 1886609290440, 10095657707146, 54024066478278, 289094554417718, 1547007980129850
Offset: 1
Keywords
Examples
Some solutions for n=4 ..1..1..1..0..1....1..0..0..0..0....1..1..1..1..1....1..1..0..0..0 ..0..0..0..0..0....0..0..0..0..0....0..1..0..1..0....0..1..0..1..0 ..0..0..0..0..0....0..1..0..0..0....0..1..0..1..0....0..1..0..1..0 ..1..0..1..0..1....0..1..0..0..0....1..1..1..1..0....0..0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 4*a(n-1) +4*a(n-2) +74*a(n-4) +78*a(n-5) +56*a(n-6) +272*a(n-7) +207*a(n-8) -126*a(n-9) -388*a(n-10) -296*a(n-11) +36*a(n-12) +152*a(n-13) +132*a(n-14) -16*a(n-16) -22*a(n-17) +a(n-20)
Comments