cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A207947 Number of nX6 0..1 arrays avoiding 0 0 1 and 0 1 1 horizontally and 0 1 0 and 1 0 1 vertically.

Original entry on oeis.org

16, 256, 1296, 8836, 55696, 362404, 2334784, 15069924, 97180164, 626901444, 4043942464, 26086772196, 168278807524, 1085522269456, 7002416779264, 45170765646400, 291384831720004, 1879647527429604, 12125115459266404
Offset: 1

Views

Author

R. H. Hardin Feb 21 2012

Keywords

Comments

Column 6 of A207949

Examples

			Some solutions for n=4
..1..1..1..1..0..1....0..0..0..0..0..0....0..0..0..0..0..0....1..0..1..0..1..0
..0..1..0..1..0..1....1..1..1..0..1..0....1..0..1..0..0..0....1..1..0..0..0..0
..0..0..0..0..0..0....1..1..1..0..1..0....1..1..1..1..0..0....1..1..0..1..0..1
..0..0..0..0..0..0....1..0..1..0..0..0....1..1..0..1..0..0....1..1..1..1..0..1
		

Formula

Empirical: a(n) = 5*a(n-1) +7*a(n-2) +a(n-3) +76*a(n-4) +105*a(n-5) -4*a(n-6) -115*a(n-7) -119*a(n-8) +a(n-9) +29*a(n-10) +41*a(n-11) -8*a(n-12) -4*a(n-14) +a(n-15)