cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A207947 Number of nX6 0..1 arrays avoiding 0 0 1 and 0 1 1 horizontally and 0 1 0 and 1 0 1 vertically.

Original entry on oeis.org

16, 256, 1296, 8836, 55696, 362404, 2334784, 15069924, 97180164, 626901444, 4043942464, 26086772196, 168278807524, 1085522269456, 7002416779264, 45170765646400, 291384831720004, 1879647527429604, 12125115459266404
Offset: 1

Views

Author

R. H. Hardin Feb 21 2012

Keywords

Comments

Column 6 of A207949

Examples

			Some solutions for n=4
..1..1..1..1..0..1....0..0..0..0..0..0....0..0..0..0..0..0....1..0..1..0..1..0
..0..1..0..1..0..1....1..1..1..0..1..0....1..0..1..0..0..0....1..1..0..0..0..0
..0..0..0..0..0..0....1..1..1..0..1..0....1..1..1..1..0..0....1..1..0..1..0..1
..0..0..0..0..0..0....1..0..1..0..0..0....1..1..0..1..0..0....1..1..1..1..0..1
		

Formula

Empirical: a(n) = 5*a(n-1) +7*a(n-2) +a(n-3) +76*a(n-4) +105*a(n-5) -4*a(n-6) -115*a(n-7) -119*a(n-8) +a(n-9) +29*a(n-10) +41*a(n-11) -8*a(n-12) -4*a(n-14) +a(n-15)

A207945 Number of n X n 0..1 arrays avoiding 0 0 1 and 0 1 1 horizontally and 0 1 0 and 1 0 1 vertically.

Original entry on oeis.org

2, 16, 102, 1369, 18172, 362404, 7513176, 208947025, 6018764552, 220642515076, 8323556149400, 385679126851225, 18298351908731960, 1039016878950507076, 60196918693633189580, 4091835726607570472281, 283040172741877232421150
Offset: 1

Views

Author

R. H. Hardin, Feb 21 2012

Keywords

Comments

Diagonal of A207949.

Examples

			Some solutions for n=4
..1..1..0..1....0..1..0..1....1..1..0..1....0..0..0..0....0..0..0..0
..0..0..0..0....1..1..0..1....1..1..0..1....1..0..1..0....0..0..0..0
..0..0..0..0....1..1..0..1....0..1..0..0....1..0..1..0....1..1..0..0
..1..0..1..0....1..0..0..0....0..0..0..0....0..1..0..0....1..1..0..0
		

Crossrefs

Cf. A207949.

A207946 Number of nX5 0..1 arrays avoiding 0 0 1 and 0 1 1 horizontally and 0 1 0 and 1 0 1 vertically.

Original entry on oeis.org

12, 144, 612, 3478, 18172, 98126, 524104, 2806686, 15013734, 80346942, 429945512, 2300766930, 12311872834, 65883534740, 352556938048, 1886609290440, 10095657707146, 54024066478278, 289094554417718, 1547007980129850
Offset: 1

Views

Author

R. H. Hardin Feb 21 2012

Keywords

Comments

Column 5 of A207949

Examples

			Some solutions for n=4
..1..1..1..0..1....1..0..0..0..0....1..1..1..1..1....1..1..0..0..0
..0..0..0..0..0....0..0..0..0..0....0..1..0..1..0....0..1..0..1..0
..0..0..0..0..0....0..1..0..0..0....0..1..0..1..0....0..1..0..1..0
..1..0..1..0..1....0..1..0..0..0....1..1..1..1..0....0..0..0..0..0
		

Formula

Empirical: a(n) = 4*a(n-1) +4*a(n-2) +74*a(n-4) +78*a(n-5) +56*a(n-6) +272*a(n-7) +207*a(n-8) -126*a(n-9) -388*a(n-10) -296*a(n-11) +36*a(n-12) +152*a(n-13) +132*a(n-14) -16*a(n-16) -22*a(n-17) +a(n-20)

A207948 Number of nX7 0..1 arrays avoiding 0 0 1 and 0 1 1 horizontally and 0 1 0 and 1 0 1 vertically.

Original entry on oeis.org

20, 400, 2340, 18330, 133812, 1007146, 7513176, 56114310, 418757982, 3126019338, 23335656728, 174203347410, 1300429210274, 9707701033916, 72467964696512, 540973578440920, 4038369684995910, 30146442775842786, 225043284353552098
Offset: 1

Views

Author

R. H. Hardin Feb 21 2012

Keywords

Comments

Column 7 of A207949

Examples

			Some solutions for n=4
..0..1..0..0..0..0..0....1..0..1..0..1..0..0....1..1..1..0..1..0..0
..1..1..1..0..0..0..0....0..1..0..0..0..0..0....0..0..0..0..0..0..0
..1..0..1..0..0..0..0....0..1..0..1..0..1..0....0..0..0..0..0..0..0
..1..0..0..0..0..0..0....0..1..0..1..0..1..0....1..1..1..0..0..0..0
		

Formula

Empirical: a(n) = 6*a(n-1) +3*a(n-2) +8*a(n-3) +303*a(n-4) +385*a(n-5) +871*a(n-6) +4356*a(n-7) +5282*a(n-8) +3375*a(n-9) +4096*a(n-10) -4422*a(n-11) -32005*a(n-12) -63696*a(n-13) -35314*a(n-14) +48358*a(n-15) +111187*a(n-16) +82219*a(n-17) -21414*a(n-18) -76099*a(n-19) -68521*a(n-20) -1500*a(n-21) +23855*a(n-22) +27908*a(n-23) +3257*a(n-24) -2887*a(n-25) -6127*a(n-26) -714*a(n-27) -94*a(n-28) +735*a(n-29) +43*a(n-30) +42*a(n-31) -45*a(n-32) -2*a(n-34) +a(n-35)

A207950 Number of 4 X n 0..1 arrays avoiding 0 0 1 and 0 1 1 horizontally and 0 1 0 and 1 0 1 vertically.

Original entry on oeis.org

10, 100, 370, 1369, 3478, 8836, 18330, 38025, 69420, 126736, 211820, 354025, 554540, 868624, 1294548, 1929321, 2764110, 3960100, 5494390, 7623121, 10298530, 13912900, 18377710, 24275329, 31453968, 40755456, 51933840, 66178225, 83107160
Offset: 1

Views

Author

R. H. Hardin, Feb 21 2012

Keywords

Comments

Row 4 of A207949.

Examples

			Some solutions for n=4
..0..0..0..0....0..1..0..1....1..0..0..0....1..0..0..0....1..1..1..1
..1..1..1..0....0..1..0..1....1..0..0..0....0..1..0..0....1..1..1..1
..1..1..1..0....1..0..1..0....1..1..1..0....0..1..0..1....1..1..1..1
..1..1..0..1....1..0..1..0....1..1..1..1....1..1..1..1....1..1..1..0
		

Crossrefs

Cf. A207949.

Formula

Empirical: a(n) = 2*a(n-1) +6*a(n-2) -14*a(n-3) -14*a(n-4) +42*a(n-5) +14*a(n-6) -70*a(n-7) +70*a(n-9) -14*a(n-10) -42*a(n-11) +14*a(n-12) +14*a(n-13) -6*a(n-14) -2*a(n-15) +a(n-16).

A207951 Number of 5Xn 0..1 arrays avoiding 0 0 1 and 0 1 1 horizontally and 0 1 0 and 1 0 1 vertically.

Original entry on oeis.org

16, 256, 1232, 5929, 18172, 55696, 133812, 321489, 662256, 1364224, 2526384, 4678569, 8011752, 13719616, 22123992, 35676729, 54856032, 84345856, 124764640, 184552225, 264364100, 378691600, 527969260, 736091161, 1002761760, 1366041600
Offset: 1

Views

Author

R. H. Hardin Feb 21 2012

Keywords

Comments

Row 5 of A207949

Examples

			Some solutions for n=4
..1..0..1..0....0..0..0..0....1..1..0..1....0..1..0..0....1..1..1..1
..1..0..1..0....0..0..0..0....0..1..0..1....1..1..0..1....1..1..1..1
..0..0..0..0....1..0..1..0....0..0..0..0....1..1..1..1....1..1..1..1
..0..0..0..0....1..1..1..0....1..0..0..0....1..0..1..0....1..1..1..0
..0..0..0..0....1..1..0..0....1..0..0..0....1..0..1..0....1..0..1..0
		

Formula

Empirical: a(n) = 2*a(n-1) +8*a(n-2) -18*a(n-3) -27*a(n-4) +72*a(n-5) +48*a(n-6) -168*a(n-7) -42*a(n-8) +252*a(n-9) -252*a(n-11) +42*a(n-12) +168*a(n-13) -48*a(n-14) -72*a(n-15) +27*a(n-16) +18*a(n-17) -8*a(n-18) -2*a(n-19) +a(n-20)

A207952 Number of 6Xn 0..1 arrays avoiding 0 0 1 and 0 1 1 horizontally and 0 1 0 and 1 0 1 vertically.

Original entry on oeis.org

26, 676, 4238, 26569, 98126, 362404, 1007146, 2798929, 6501278, 15100996, 30983078, 63568729, 119052836, 222964624, 389322036, 679801329, 1122859818, 1854680356, 2928100406, 4622776081, 7029589490, 10689492100, 15748468190
Offset: 1

Views

Author

R. H. Hardin Feb 21 2012

Keywords

Comments

Row 6 of A207949

Examples

			Some solutions for n=4
..1..0..1..0....1..0..0..0....0..0..0..0....0..1..0..1....0..1..0..1
..0..1..0..0....0..1..0..0....1..1..1..0....1..0..0..0....0..0..0..0
..0..1..0..1....0..1..0..1....1..1..1..0....1..0..0..0....1..0..0..0
..1..1..1..1....1..1..1..1....1..1..0..1....0..1..0..0....1..0..0..0
..1..0..1..0....1..1..1..1....1..1..0..1....0..1..0..1....1..1..1..0
..1..0..1..0....0..0..0..0....0..1..0..0....0..1..0..1....1..1..1..1
		

Formula

Empirical: a(n) = 2*a(n-1) +10*a(n-2) -22*a(n-3) -44*a(n-4) +110*a(n-5) +110*a(n-6) -330*a(n-7) -165*a(n-8) +660*a(n-9) +132*a(n-10) -924*a(n-11) +924*a(n-13) -132*a(n-14) -660*a(n-15) +165*a(n-16) +330*a(n-17) -110*a(n-18) -110*a(n-19) +44*a(n-20) +22*a(n-21) -10*a(n-22) -2*a(n-23) +a(n-24)

A207953 Number of 7Xn 0..1 arrays avoiding 0 0 1 and 0 1 1 horizontally and 0 1 0 and 1 0 1 vertically.

Original entry on oeis.org

42, 1764, 14406, 117649, 524104, 2334784, 7513176, 24176889, 63380130, 166152100, 377999250, 859955625, 1762784400, 3613452544, 6837439440, 12937925025, 22975807530, 40801576036, 68811074046, 116048554281, 187501438872
Offset: 1

Views

Author

R. H. Hardin Feb 21 2012

Keywords

Comments

Row 7 of A207949

Examples

			Some solutions for n=4
..1..0..1..0....1..0..1..0....1..0..0..0....1..1..0..0....1..0..1..0
..1..1..1..1....1..1..0..1....1..0..1..0....0..0..0..0....1..1..0..1
..1..1..1..1....1..1..0..1....1..1..1..0....0..0..0..0....1..1..0..1
..1..1..1..1....0..1..0..0....0..1..0..0....1..0..0..0....0..0..0..0
..1..1..1..0....0..0..0..0....0..0..0..0....1..1..1..0....0..0..0..0
..1..0..1..0....0..0..0..0....0..0..0..0....1..1..1..1....1..0..1..0
..1..0..0..0....0..0..0..0....1..0..0..0....0..1..0..1....1..1..1..0
		

Formula

Empirical: a(n) = 2*a(n-1) +12*a(n-2) -26*a(n-3) -65*a(n-4) +156*a(n-5) +208*a(n-6) -572*a(n-7) -429*a(n-8) +1430*a(n-9) +572*a(n-10) -2574*a(n-11) -429*a(n-12) +3432*a(n-13) -3432*a(n-15) +429*a(n-16) +2574*a(n-17) -572*a(n-18) -1430*a(n-19) +429*a(n-20) +572*a(n-21) -208*a(n-22) -156*a(n-23) +65*a(n-24) +26*a(n-25) -12*a(n-26) -2*a(n-27) +a(n-28)
Showing 1-8 of 8 results.