This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A207966 #13 Aug 19 2021 10:56:54 %S A207966 3,4,5,6,7,8,10,11,13,14,17,19,20,22,23,25,26,29,31,34,35,37,38,41,43, %T A207966 46,47,49,53,55,58,59,61,62,65,67,71,73,74,77,79,82,83,85,86,89,92,94, %U A207966 95,97,98,101,103,106,107,109,110,113,115,118,121,122,125,127 %N A207966 Numbers that match irreducible polynomials over {0,1,2}. %C A207966 Each n > 1 matches a polynomial having coefficients in {0,1,2}, determined by the prime factorization of n. %C A207966 Write n = p(1)^e(1) * p(2)^e(2) * ... * p(k)^e(k). %C A207966 The matching polynomial is then %C A207966 p(n,x) = e(1) + e(2)x + e(3)x^2 + ... + e(k)x^k. %C A207966 Identities: %C A207966 p(m*n) = p(m,x) + p(n,x); %C A207966 p(m*n) = p(gcd(m,n),x) + p(lcm(m,n),x). %C A207966 For an analogous enumeration of polynomials over {0,1}, see A206284. %C A207966 "Irreducible" refers to irreducibility over the field of rational numbers. %e A207966 Polynomials having coefficients in {0,1,2} are %e A207966 matched to the positive integers as follows: %e A207966 n ... p[n,x] .. irreducible %e A207966 1 ... 1 ....... no %e A207966 2 ... 2 ....... no %e A207966 3 ... x ....... yes %e A207966 4 ... x+1 ..... yes %e A207966 5 ... x+2 ..... yes %e A207966 6 ... 2x ...... yes %e A207966 7 ... 2x+1 .... yes %e A207966 8 ... 2x+2 .... yes %e A207966 9 ... x^2 ..... no %e A207966 10 .. 1+x^2 ... yes %t A207966 t = Table[IntegerDigits[n, 3], {n, 1, 850}]; %t A207966 b[n_] := Reverse[Table[x^k, {k, 0, n}]] %t A207966 p[n_, x_] := t[[n]].b[-1 + Length[t[[n]]]] %t A207966 Table[p[n, x], {n, 1, 15}] %t A207966 u = {}; Do[n++; If[IrreduciblePolynomialQ[p[n, x]], %t A207966 AppendTo[u, n]], {n, 300}]; u (* A207966 *) %t A207966 Complement[Range[200], u] (* A207967 *) %t A207966 b[n_] := FromDigits[IntegerDigits[u, 3][[n]]] %t A207966 Table[b[n], {n, 1, 50}] (* A207968 *) %Y A207966 Cf. A207967, A207968, A206284. %K A207966 nonn %O A207966 1,1 %A A207966 _Clark Kimberling_, Feb 21 2012