cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A207969 G.f.: exp( Sum_{n>=1} 5*Fibonacci(n)^4 * x^n/n ).

This page as a plain text file.
%I A207969 #16 Oct 18 2020 05:11:13
%S A207969 1,5,15,60,295,1625,9430,56465,345010,2139595,13419500,84926105,
%T A207969 541398665,3472389210,22385362895,144945232375,942089445030,
%U A207969 6143582084115,40181143112035,263482860974570,1731780213622125,11406235045261205,75268685723935940
%N A207969 G.f.: exp( Sum_{n>=1} 5*Fibonacci(n)^4 * x^n/n ).
%C A207969 Conjecture: exp( Sum_{n>=1} 5*Fibonacci(n)^(2*k) * x^n/n ) is an integer series for integers k>=0.
%C A207969 Note that exp( Sum_{n>=1} 5*Fibonacci(n)^(2*k+1) * x^n/n ) is not an integer series for integers k.
%C A207969 Note that exp( Sum_{n>=1} Fibonacci(n)^(2*k) * x^n/n ) is not an integer series for integers k.
%F A207969 The o.g.f. A(x) = 1 + 5*x + 15*x^2 + 60*x^3 + ... is an algebraic function: A(x)^5 = (1 + 3*x + x^2)^4/( (1 - 7*x + x^2)*(1 - 2*x + x^2)^3 ). Cf. A203804. - _Peter Bala_, Apr 03 2014
%F A207969 a(n) ~ 2^(4/5) * 5^(1/10) * phi^(4*n) / (Gamma(1/5) * 3^(1/5) * n^(4/5)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - _Vaclav Kotesovec_, Oct 18 2020
%e A207969 G.f.: A(x) = 1 + 5*x + 15*x^2 + 60*x^3 + 295*x^4 + 1625*x^5 + 9430*x^6 +...
%e A207969 such that
%e A207969 log(A(x))/5 = x + x^2/2 + 2^4*x^3/3 + 3^4*x^4/4 + 5^4*x^5/5 + 8^4*x^6/6 + 13^4*x^7/7 +...+ Fibonacci(n)^4*x^n/n +...
%o A207969 (PARI) {a(n)=polcoeff(exp(sum(k=1,n,5*fibonacci(k)^4*x^k/k)+x*O(x^n)),n)}
%o A207969 for(n=0,25,print1(a(n),", "))
%Y A207969 Cf. A054888, A207970, A207971, A207972, A207834, A207835.
%Y A207969 A077916, A203804.
%K A207969 nonn
%O A207969 0,2
%A A207969 _Paul D. Hanna_, Feb 22 2012