cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A207971 G.f.: exp( Sum_{n>=1} 5*Fibonacci(n)^(2*n) * x^n/n ).

This page as a plain text file.
%I A207971 #10 Mar 30 2012 18:37:37
%S A207971 1,5,15,140,8795,9808325,57315191130,2812698182891585,
%T A207971 894119494320160426760,2048089587570930007354766745,
%U A207971 32079229816919862900907520464756250,3500720882833094608324749707338857577696205,2633228648869966875007549667526201212159637714889015
%N A207971 G.f.: exp( Sum_{n>=1} 5*Fibonacci(n)^(2*n) * x^n/n ).
%C A207971 Give g.f. A(x), note that A(x)^(1/5) is not an integer series.
%e A207971 G.f.: A(x) = 1 + 5*x + 15*x^2 + 140*x^3 + 8795*x^4 + 9808325*x^5 +...
%e A207971 such that
%e A207971 log(A(x))/5 = x + x^2/2 + 2^6*x^3/3 + 3^8*x^4/4 + 5^10*x^5/5 + 8^12*x^6/6 + 13^14*x^7/7 +...+ Fibonacci(n)^(2*n)*x^n/n +...
%o A207971 (PARI) {a(n)=polcoeff(exp(sum(k=1,n,5*fibonacci(k)^(2*k)*x^k/k)+x*O(x^n)),n)}
%o A207971 for(n=0,31,print1(a(n),", "))
%Y A207971 Cf. A054888, A207969, A207970, A207972, A207834, A207834.
%K A207971 nonn
%O A207971 0,2
%A A207971 _Paul D. Hanna_, Feb 22 2012