This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A207972 #25 Dec 11 2022 10:43:34 %S A207972 1,5,20,115,1665,82650,12847310,5620114060,6659421195205, %T A207972 21082748688390045,177217804775828062850,3941798437750184226876305, %U A207972 231505293200405380457355524620,35848160499603817968830380832049915,14619744406297572472084577939841875791890 %N A207972 Expansion of g.f.: exp( Sum_{n>=1} 5*Fibonacci(n^2) * x^n/n ). %C A207972 Moss and Ward prove that this is an integral sequence. - _Peter Bala_, Nov 28 2022 %C A207972 Let A(x) be the g.f. for this sequence. Note that the expansion of A(x)^(1/5) = exp( Sum_{n>=1} Fibonacci(n^2) * x^n/n ) does not have integer coefficients. %H A207972 Patrick Moss and Tom Ward, <a href="https://arxiv.org/abs/2011.13068">Fibonacci along even powers is (almost) realizable</a>, arXiv:2011.13068 [math.NT], 2020; Fibonacci Quart. 60 (2022), no. 1, 40-47. %e A207972 G.f.: A(x) = 1 + 5*x + 20*x^2 + 115*x^3 + 1665*x^4 + 82650*x^5 + ... %e A207972 such that %e A207972 log(A(x))/5 = x + 3*x^2/2 + 34*x^3/3 + 987*x^4/4 + 75025*x^5/5 + 14930352*x^6/6 + 7778742049*x^7/7 + ... + Fibonacci(n^2)*x^n/n + ... %o A207972 (PARI) {a(n)=polcoeff(exp(sum(k=1,n,5*fibonacci(k^2)*x^k/k)+x*O(x^n)),n)} %o A207972 for(n=0,16,print1(a(n),", ")) %Y A207972 Cf. A054888, A207969, A207970, A207971, A054783, A207834, A211892. %K A207972 nonn,easy %O A207972 0,2 %A A207972 _Paul D. Hanna_, Feb 22 2012