This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A207974 #37 Mar 14 2017 20:47:33 %S A207974 1,1,1,1,2,1,1,3,1,1,1,4,2,2,1,1,5,2,4,1,1,1,6,3,6,3,2,1,1,7,3,9,3,5, %T A207974 1,1,1,8,4,12,6,8,4,2,1,1,9,4,16,6,14,4,6,1,1,1,10,5,20,10,20,10,10,5, %U A207974 2,1 %N A207974 Triangle related to A152198. %C A207974 Row sums are A027383(n). %C A207974 Diagonal sums are alternately A014739(n) and A001911(n+1). %C A207974 The matrix inverse starts %C A207974 1; %C A207974 -1,1; %C A207974 1,-2,1; %C A207974 1,-1,-1,1; %C A207974 -1,2,0,-2,1; %C A207974 -1,1,2,-2,-1,1; %C A207974 1,-2,-1,4,-1,-2,1; %C A207974 1,-1,-3,3,3,-3,-1,1; %C A207974 -1,2,2,-6,0,6,-2,-2,1; %C A207974 -1,1,4,-4,-6,6,4,-4,-1,1; %C A207974 1,-2,-3,8,2,-12,2,8,-3,-2,1; %C A207974 apparently related to A158854. - _R. J. Mathar_, Apr 08 2013 %C A207974 From _Gheorghe Coserea_, Jun 11 2016: (Start) %C A207974 T(n,k) is the number of terms of the sequence A057890 in the interval [2^n,2^(n+1)-1] having binary weight k+1. %C A207974 T(n,k) = A007318(n,k) (mod 2) and the number of odd terms in row n of the triangle is 2^A000120(n). %C A207974 (End) %H A207974 Gheorghe Coserea, <a href="/A207974/b207974.txt">Rows n = 0..200, flattened</a> %F A207974 T(n,k) = T(n-1,k-1) - (-1)^k*T(n-1,k), k>0 ; T(n,0) = 1. %F A207974 T(2n,2k) = T(2n+1,2k) = binomial(n,k) = A007318(n,k). %F A207974 T(2n+1,2k+1) = A110813(n,k). %F A207974 T(2n+2,2k+1) = 2*A135278(n,k). %F A207974 T(n,2k) + T(n,2k+1) = A152201(n,k). %F A207974 T(n,2k) = A152198(n,k). %F A207974 T(n+1,2k+1) = A152201(n,k). %F A207974 T(n,k) = T(n-2,k-2) + T(n-2,k). %F A207974 T(2n,n) = A128014(n+1). %F A207974 T(n,k) = card {p, 2^n <= A057890(p) <= 2^(n+1)-1 and A000120(A057890(p)) = k+1}. - _Gheorghe Coserea_, Jun 09 2016 %F A207974 P_n(x) = Sum_{k=0..n} T(n,k)*x^k = ((2+x+(n mod 2)*x^2)*(1+x^2)^(n\2) - 2)/x. - _Gheorghe Coserea_, Mar 14 2017 %e A207974 Triangle begins : %e A207974 n\k [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] %e A207974 [0] 1; %e A207974 [1] 1, 1; %e A207974 [2] 1, 2, 1; %e A207974 [3] 1, 3, 1, 1; %e A207974 [4] 1, 4, 2, 2, 1; %e A207974 [5] 1, 5, 2, 4, 1, 1; %e A207974 [6] 1, 6, 3, 6, 3, 2, 1; %e A207974 [7] 1, 7, 3, 9, 3, 5, 1, 1; %e A207974 [8] 1, 8, 4, 12, 6, 8, 4, 2, 1; %e A207974 [9] 1, 9, 4, 16, 6, 14, 4, 6, 1, 1; %e A207974 [10] ... %p A207974 A207974 := proc(n,k) %p A207974 if k = 0 then %p A207974 1; %p A207974 elif k < 0 or k > n then %p A207974 0 ; %p A207974 else %p A207974 procname(n-1,k-1)-(-1)^k*procname(n-1,k) ; %p A207974 end if; %p A207974 end proc: # _R. J. Mathar_, Apr 08 2013 %o A207974 (PARI) %o A207974 seq(N) = { %o A207974 my(t = vector(N+1, n, vector(n, k, k==1 || k == n))); %o A207974 for(n = 2, N+1, for (k = 2, n-1, %o A207974 t[n][k] = t[n-1][k-1] + (-1)^(k%2)*t[n-1][k])); %o A207974 return(t); %o A207974 }; %o A207974 concat(seq(10)) \\ _Gheorghe Coserea_, Jun 09 2016 %o A207974 (PARI) %o A207974 P(n) = ((2+x+(n%2)*x^2) * (1+x^2)^(n\2) - 2)/x; %o A207974 concat(vector(11, n, Vecrev(P(n-1)))) \\ _Gheorghe Coserea_, Mar 14 2017 %Y A207974 Cf. Columns : A000012, A000027, A004526, A002620, A008805, A006918, A058187 %Y A207974 Cf. Diagonals : A000012, A000034, A052938, A097362 %Y A207974 Cf. A007318, A110813, A135278, A152201 %Y A207974 Related to thickness: A000120, A027383, A057890, A274036. %K A207974 easy,nonn,tabl %O A207974 0,5 %A A207974 _Philippe Deléham_, Feb 22 2012