This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A207978 #39 Feb 17 2024 09:29:40 %S A207978 1,2,7,67,1080,25287,794545,31858034,1573857867,93345011951, %T A207978 6514819011216,526593974392123,48658721593531669,5084549201524804642, %U A207978 595348294459678745663,77500341343460209843627,11140107960738185817545800,1757660562895916320583653791 %N A207978 Number of n X 2 nonnegative integer arrays with new values 0 upwards introduced in row major order and no element equal to any diagonal or antidiagonal neighbor (colorings ignoring permutations of colors). %C A207978 Column 2 of A207981. %C A207978 a(n) is equal to the number of set partitions of {1,2,...,2n} such that k and k+2 do not appear in the same block for any k. - _Andrew Howroyd_ , May 23 2023 %C A207978 a(n) is equal to the number of set partitions of {1,2,...,2n} such that the only sets of size 1 in the set partition are either {1} or {2}. %C A207978 a(n) is also the dimension of the centralizer algebra End_{S_m}((V^{(m-1,1)}_{S_m})^{\otimes n-1} \otimes V_m ) where V^{(m-1,1)}_{S_m} is an irreducible S_m module indexed by (m-1,1) and V_m is the permutation module for S_m (with the condition that m is sufficiently large). - _Mike Zabrocki_, May 23 2023 %H A207978 Alois P. Heinz, <a href="/A207978/b207978.txt">Table of n, a(n) for n = 0..288</a> (terms n = 1..40 from R. H. Hardin) %H A207978 Rosa Orellana, Nancy Wallace, and Mike Zabrocki, <a href="https://arxiv.org/abs/2306.17326">Representations of the quasi-partition algebras</a>, arXiv:2306.17326 [math.RT], 2023. %F A207978 a(n) = Sum_{s=0..2n} (-1)^s binomial(2n-2,s) Bell(2n-s). - _Mike Zabrocki_, May 23 2023 %F A207978 a(n) = A011968(2*n-1) for n>=1. - _Alois P. Heinz_, May 30 2023 %e A207978 Some solutions for n=4: %e A207978 ..0..0....0..0....0..0....0..0....0..0....0..0....0..1....0..0....0..0....0..1 %e A207978 ..1..1....1..1....1..1....1..1....1..1....1..1....0..1....1..1....1..1....2..1 %e A207978 ..2..3....2..0....2..0....2..2....0..2....0..0....0..1....0..2....0..2....0..1 %e A207978 ..2..0....3..3....1..0....3..4....3..1....1..1....0..1....3..4....0..1....0..1 %e A207978 The set partitions of 4 where at most {1} and {2} are the only sets of size 1 are {1234}, {1|234}, {2|134}, {12|34}, {13|24}, {14|23}, {1|2|34} - _Mike Zabrocki_, May 23 2023 %p A207978 a:=n->add((-1)^s*binomial(2*n-2, s) * combinat[bell](2*n-s), s = 0 .. 2*n); # _Mike Zabrocki_, May 23 2023 %p A207978 # second Maple program: %p A207978 b:= proc(n) option remember; `if`(n=0, 1, %p A207978 add(b(n-j)*binomial(n-1, j-1), j=1..n)) %p A207978 end: %p A207978 a:= n-> `if`(n=0, 1, b(2*n-1)+b(2*n-2)): %p A207978 seq(a(n), n=0..19); # _Alois P. Heinz_, May 30 2023 %t A207978 b[n_] := b[n] = If[n == 0, 1, Sum[b[n-j] Binomial[n-1, j-1], {j, 1, n}]]; %t A207978 a[n_] := If[n == 0, 1, b[2n-1] + b[2n-2]]; %t A207978 Table[a[n], {n, 0, 19}] (* _Jean-François Alcover_, Feb 17 2024, after _Alois P. Heinz_ *) %o A207978 (Sage) a = lambda n: sum((-1)**s*binomial(2*n-2,s)*bell_number(2*n-s) for s in range(2*n-2+1)) # _Mike Zabrocki_, May 23 2023 %Y A207978 Cf. A000110, A011968, A207981. %K A207978 nonn %O A207978 0,2 %A A207978 _R. H. Hardin_, Feb 22 2012 %E A207978 New description and a formula added by _Mike Zabrocki_, May 23 2023 %E A207978 a(0)=1 prepended by _Alois P. Heinz_, May 30 2023