A208001 T(n,k)=Number of n X k nonnegative integer arrays with new values 0 upwards introduced in row major order and no element equal to any knight-move neighbor (colorings ignoring permutations of colors).
1, 2, 2, 5, 15, 5, 15, 114, 114, 15, 52, 1657, 4141, 1657, 52, 203, 36401, 426422, 426422, 36401, 203, 877, 1094076, 86545486, 450288795, 86545486, 1094076, 877, 4140, 42436913, 29169661126, 1182700979380, 1182700979380, 29169661126, 42436913, 4140
Offset: 1
Examples
Table starts ....1........2...........5............15............52.........203 ....2.......15.........114..........1657.........36401.....1094076 ....5......114........4141........426422......86545486.29169661126 ...15.....1657......426422.....450288795.1182700979380 ...52....36401....86545486.1182700979380 ..203..1094076.29169661126 ..877.42436913 .4140 ... Some solutions for n=4 k=3 ..0..0..0....0..0..0....0..0..0....0..1..0....0..0..1....0..0..0....0..0..0 ..1..0..1....1..2..1....1..0..1....1..0..1....0..0..1....1..0..1....1..0..1 ..2..1..2....2..1..2....2..1..2....0..1..2....2..2..1....2..1..2....2..2..2 ..1..0..3....3..0..0....1..0..1....1..2..1....2..3..1....1..2..1....1..0..1
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..66 (terms 1..39 from R. H. Hardin).
- Eric Weisstein's World of Mathematics, Knight Graph.
- Eric Weisstein's World of Mathematics, Vertex Coloring.