A208005 Number of nX6 0..1 arrays avoiding 0 0 1 and 1 0 0 horizontally and 0 1 1 and 1 1 0 vertically.
22, 484, 1690, 4993, 24512, 90232, 486443, 2001968, 10846870, 47911153, 256232284, 1188682252, 6276190547, 30137070988, 157660283714, 775400765057, 4032502502920, 20159263106416, 104466312892411, 528009028013752
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..1..0..1..1..1....0..1..0..1..0..1....1..1..1..1..1..0....0..0..0..0..0..0 ..0..0..0..0..0..0....0..1..1..0..1..1....1..0..1..1..0..1....1..0..1..0..1..0 ..1..0..1..0..1..0....1..1..0..1..0..1....1..1..1..1..1..0....0..1..0..1..0..1 ..0..1..0..1..0..1....0..1..1..0..1..1....1..0..1..1..0..1....1..0..1..0..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 9*a(n-1) -2*a(n-2) -170*a(n-3) +392*a(n-4) +322*a(n-5) -1512*a(n-6) +474*a(n-7) +1498*a(n-8) -942*a(n-9) -376*a(n-10) +326*a(n-11) +a(n-12) -19*a(n-13) for n>14
Comments