cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A208023 Number of n X 3 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 0 and 1 0 1 vertically.

Original entry on oeis.org

6, 36, 102, 279, 741, 1995, 5404, 14555, 39180, 105688, 284961, 767907, 2070021, 5580470, 15042195, 40547128, 109300950, 294632265, 794208105, 2140875657, 5770963528, 15556228121, 41933454712, 113036097920, 304700733021
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2012

Keywords

Comments

Column 3 of A208028.

Examples

			Some solutions for n=4:
..1..0..0....0..1..1....1..1..1....1..1..1....1..1..0....1..0..0....0..1..0
..0..1..0....0..1..1....1..1..1....0..1..0....0..1..0....0..1..0....1..0..1
..0..1..1....1..0..0....1..1..0....0..1..0....0..1..1....0..1..1....1..0..1
..1..1..1....1..0..0....1..0..0....1..0..1....1..1..1....1..0..0....1..1..1
		

Crossrefs

Cf. A208028.

Formula

Empirical: a(n) = a(n-1) + a(n-2) + 8*a(n-3) + 4*a(n-4) + 3*a(n-5) - 5*a(n-6) - a(n-7) + a(n-9) for n>10.
Empirical g.f.: x*(6 + 30*x + 60*x^2 + 93*x^3 + 48*x^4 - 3*x^5 - 50*x^6 - 8*x^7 + 6*x^8 + 9*x^9) / (1 - x - x^2 - 8*x^3 - 4*x^4 - 3*x^5 + 5*x^6 + x^7 - x^9). - Colin Barker, Mar 06 2018

A208022 Number of n X n 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 0 and 1 0 1 vertically.

Original entry on oeis.org

2, 16, 102, 1377, 26845, 955073, 56728924, 5753550295, 985606824420, 287995609933240, 142779868614005475, 120212913507245137971, 171965976593899860842629, 417924073201539457547295084
Offset: 1

Views

Author

R. H. Hardin Feb 22 2012

Keywords

Comments

Diagonal of A208028

Examples

			Some solutions for n=4
..1..0..1..1....0..1..1..0....0..1..1..0....1..0..1..1....1..0..1..0
..1..0..1..0....1..1..0..0....1..0..1..0....1..0..1..0....1..0..1..1
..1..1..0..0....1..1..0..1....1..0..1..1....1..1..0..0....1..1..1..1
..1..1..0..1....1..1..1..1....0..1..0..1....0..1..0..1....1..1..1..1
		

A208024 Number of nX4 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 0 and 1 0 1 vertically.

Original entry on oeis.org

10, 100, 378, 1377, 4823, 17119, 61292, 218243, 776100, 2765576, 9852117, 35078967, 124935587, 444991022, 1584772385, 5644067960, 20101607046, 71591508557, 254970749655, 908076480129, 3234105068568, 11518206999371, 41021924800776
Offset: 1

Views

Author

R. H. Hardin Feb 22 2012

Keywords

Comments

Column 4 of A208028

Examples

			Some solutions for n=4
..1..0..1..0....1..1..1..1....0..1..0..1....0..1..1..0....0..1..1..1
..0..1..1..0....1..1..1..0....0..1..1..0....1..1..0..0....1..1..0..1
..0..1..0..1....1..0..1..0....1..1..0..0....0..1..0..1....1..1..0..1
..1..1..0..1....1..0..1..1....0..1..0..1....0..1..1..1....1..0..1..0
		

Formula

Empirical: a(n) = a(n-1) +a(n-2) +20*a(n-3) +27*a(n-4) +34*a(n-5) -21*a(n-6) -105*a(n-7) -149*a(n-8) +6*a(n-9) +254*a(n-10) +227*a(n-11) -101*a(n-12) -242*a(n-13) -93*a(n-14) +86*a(n-15) +77*a(n-16) +15*a(n-17) -34*a(n-18) -9*a(n-19) -5*a(n-20) +7*a(n-21) -2*a(n-22) -a(n-24) for n>25

A208025 Number of nX5 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 0 and 1 0 1 vertically.

Original entry on oeis.org

16, 256, 1260, 5895, 26845, 123709, 574560, 2652823, 12235080, 56562528, 261375285, 1207084221, 5576420791, 25763656492, 119015522955, 549803070176, 2539953311868, 11733758509383, 54205846730505, 250413745670973
Offset: 1

Views

Author

R. H. Hardin Feb 22 2012

Keywords

Comments

Column 5 of A208028

Examples

			Some solutions for n=4
..1..1..1..1..1....1..1..1..1..1....0..1..1..0..1....1..0..1..1..1
..0..1..1..1..1....0..1..1..1..1....1..1..0..1..1....0..1..0..1..1
..0..1..0..1..0....0..1..1..1..1....1..1..0..1..1....0..1..0..1..0
..1..1..0..1..0....1..1..1..1..0....0..1..1..1..1....1..0..1..1..0
		

Formula

Empirical: a(n) = a(n-1) +3*a(n-2) +46*a(n-3) +80*a(n-4) +85*a(n-5) -209*a(n-6) -717*a(n-7) -782*a(n-8) +822*a(n-9) +3069*a(n-10) +1453*a(n-11) -3393*a(n-12) -3921*a(n-13) -204*a(n-14) +3302*a(n-15) +2760*a(n-16) -110*a(n-17) -883*a(n-18) -1470*a(n-19) -1242*a(n-20) +710*a(n-21) -507*a(n-22) +1675*a(n-23) -849*a(n-24) +968*a(n-25) -885*a(n-26) +238*a(n-27) -485*a(n-28) +90*a(n-29) -101*a(n-30) +63*a(n-31) -7*a(n-32) +14*a(n-33) -3*a(n-34) -a(n-36) for n>37

A208026 Number of nX6 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 0 and 1 0 1 vertically.

Original entry on oeis.org

26, 676, 4374, 26685, 158847, 955073, 5788524, 34901455, 210178620, 1268454968, 7652012583, 46136741805, 278268558895, 1678429458230, 10122469053445, 61049336691480, 368205520547934, 2220708116004047, 13393382573976615
Offset: 1

Views

Author

R. H. Hardin Feb 22 2012

Keywords

Comments

Column 6 of A208028

Examples

			Some solutions for n=4
..1..0..1..0..1..0....1..0..1..0..1..0....0..1..0..1..0..1....1..0..1..1..1..0
..0..1..0..1..0..0....1..0..1..1..1..0....1..1..0..1..1..1....0..1..0..1..1..0
..0..1..0..1..0..1....0..1..0..1..0..1....0..1..1..1..1..0....0..1..0..1..0..1
..1..0..1..1..1..0....0..1..0..1..0..1....0..1..1..1..0..0....1..0..1..1..0..0
		

Formula

Empirical: a(n) = a(n-1) +3*a(n-2) +106*a(n-3) +305*a(n-4) +688*a(n-5) -487*a(n-6) -7636*a(n-7) -22388*a(n-8) -16653*a(n-9) +105705*a(n-10) +368317*a(n-11) +296151*a(n-12) -1322186*a(n-13) -3797589*a(n-14) -461119*a(n-15) +12216056*a(n-16) +16314675*a(n-17) -11652578*a(n-18) -48384768*a(n-19) -31494807*a(n-20) +52484033*a(n-21) +108587927*a(n-22) +37697973*a(n-23) -108118565*a(n-24) -174749969*a(n-25) -53159946*a(n-26) +135111621*a(n-27) +237174429*a(n-28) +96181263*a(n-29) -81439514*a(n-30) -277585453*a(n-31) -182415247*a(n-32) +25256104*a(n-33) +180399360*a(n-34) +347994520*a(n-35) -90243930*a(n-36) +165953626*a(n-37) -662537687*a(n-38) +556623889*a(n-39) -991152494*a(n-40) +1372650960*a(n-41) -1621551426*a(n-42) +1909898571*a(n-43) -2182104283*a(n-44) +2186815242*a(n-45) -2123785604*a(n-46) +2065891574*a(n-47) -1695531591*a(n-48) +1513432468*a(n-49) -1178637615*a(n-50) +918618751*a(n-51) -671511358*a(n-52) +497302975*a(n-53) -324440300*a(n-54) +223677440*a(n-55) -145261693*a(n-56) +84442881*a(n-57) -54971856*a(n-58) +30801717*a(n-59) -17151395*a(n-60) +9895586*a(n-61) -5453123*a(n-62) +2470341*a(n-63) -1537394*a(n-64) +757067*a(n-65) -221697*a(n-66) +233701*a(n-67) -62539*a(n-68) +16901*a(n-69) -29422*a(n-70) +1837*a(n-71) -2160*a(n-72) +2083*a(n-73) +61*a(n-74) +274*a(n-75) -44*a(n-76) +10*a(n-77) -24*a(n-78) -4*a(n-79) +a(n-81) for n>82

A208027 Number of nX7 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 0 and 1 0 1 vertically.

Original entry on oeis.org

42, 1764, 14946, 118179, 917293, 7184755, 56728924, 445530887, 3494319540, 27469986456, 215862782229, 1695298344579, 13318507574891, 104639074476398, 822013471428905, 6457620629731560, 50731795567376622, 398547965742628997
Offset: 1

Views

Author

R. H. Hardin Feb 22 2012

Keywords

Comments

Column 7 of A208028

Examples

			Some solutions for n=4
..1..1..0..1..1..0..1....1..1..0..1..1..0..1....1..0..1..1..0..1..0
..0..1..0..1..1..0..0....0..1..1..0..1..1..1....0..1..1..1..0..1..0
..0..1..1..0..1..1..0....0..1..1..0..1..1..0....0..1..0..1..1..1..1
..1..0..1..0..1..0..1....1..1..0..1..0..1..0....1..1..0..1..0..1..1
		

A208029 Number of 4 X n 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 0 and 1 0 1 vertically.

Original entry on oeis.org

9, 81, 279, 1377, 5895, 26685, 118179, 527913, 2350215, 10476981, 46680363, 208028817, 926993439, 4130894781, 18407971395, 82029484089, 365538508695, 1628908337349, 7258719524571, 32346212936481, 144140772230991
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2012

Keywords

Comments

Row 4 of A208028.

Examples

			Some solutions for n=4:
..1..1..0..0....0..1..0..1....1..0..1..1....1..0..1..1....0..1..1..0
..0..1..1..1....0..1..1..0....1..0..1..0....1..0..1..0....1..1..0..0
..0..1..1..0....1..1..0..0....1..1..0..0....1..1..0..0....1..1..0..1
..1..1..0..0....0..1..0..1....1..1..0..1....0..1..0..1....1..1..1..1
		

Crossrefs

Cf. A208028.

Formula

Empirical: a(n) = 2*a(n-1) + 11*a(n-2) + 2*a(n-3) - 10*a(n-4).
Empirical g.f.: 9*x*(1 - x)*(1 + 8*x + 10*x^2) / (1 - 2*x - 11*x^2 - 2*x^3 + 10*x^4). - Colin Barker, Jun 26 2018

A208030 Number of 5 X n 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 0 and 1 0 1 vertically.

Original entry on oeis.org

13, 169, 741, 4823, 26845, 158847, 917293, 5349227, 31070195, 180762387, 1050937017, 6111802359, 35539343255, 206667375733, 1201779520773, 6988465966781, 40638445631355, 236315996095075, 1374196381175527
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2012

Keywords

Comments

Row 5 of A208028.

Examples

			Some solutions for n=4:
..0..1..1..0....0..1..1..0....1..1..1..0....0..1..1..1....0..1..0..0
..1..0..1..0....0..1..0..1....0..1..0..0....1..0..1..0....1..1..1..0
..1..0..1..1....1..1..0..1....0..1..0..1....1..0..1..0....1..1..0..1
..1..1..1..1....1..0..1..0....1..0..1..0....0..1..0..1....1..1..0..0
..1..1..1..1....1..0..1..0....1..0..1..0....0..1..0..0....1..1..1..0
		

Crossrefs

Cf. A208028.

Formula

Empirical: a(n) = 3*a(n-1) + 19*a(n-2) - 9*a(n-3) - 42*a(n-4) + 31*a(n-5) + 3*a(n-6) - 4*a(n-7).
Empirical g.f.: 13*x*(1 + 10*x - x^2 - 38*x^3 + 28*x^4 + 3*x^5 - 4*x^6) / ((1 - x)*(1 - 2*x - 21*x^2 - 12*x^3 + 30*x^4 - x^5 - 4*x^6)). - Colin Barker, Jun 26 2018

A208031 Number of 6Xn 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 0 and 1 0 1 vertically.

Original entry on oeis.org

19, 361, 1995, 17119, 123709, 955073, 7184755, 54606513, 413322903, 3133722193, 23742848381, 179940784609, 1363558911785, 10333337050839, 78306467535059, 593415477442647, 4496952127639277, 34078343213807171, 258248804284088975
Offset: 1

Views

Author

R. H. Hardin Feb 22 2012

Keywords

Comments

Row 6 of A208028

Examples

			Some solutions for n=4
..0..1..0..1....1..0..1..1....1..1..1..0....1..0..1..1....0..1..0..1
..1..0..1..1....1..0..1..1....0..1..1..1....0..1..1..1....0..1..0..0
..1..0..1..1....1..1..0..1....0..1..0..0....0..1..1..0....1..0..1..0
..0..1..1..0....0..1..0..1....1..1..0..0....1..1..0..0....1..0..1..1
..0..1..0..0....0..1..1..1....1..0..1..1....1..1..0..1....0..1..1..0
..1..1..0..1....1..0..1..1....1..0..1..0....1..0..1..0....0..1..0..0
		

Formula

Empirical: a(n) = 5*a(n-1) +30*a(n-2) -64*a(n-3) -157*a(n-4) +303*a(n-5) +101*a(n-6) -262*a(n-7) -23*a(n-8) +64*a(n-9) -4*a(n-11)

A208032 Number of 7 X n 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 0 and 1 0 1 vertically.

Original entry on oeis.org

28, 784, 5404, 61292, 574560, 5788524, 56728924, 561913408, 5542832148, 54764938004, 540744613920, 5340655599188, 52741354585556, 520866777405464, 5143921470354156, 50800175218659076, 501689190833405736
Offset: 1

Views

Author

R. H. Hardin Feb 22 2012

Keywords

Comments

Row 7 of A208028.

Examples

			Some solutions for n=4
..1..0..1..1....0..1..0..1....0..1..1..0....0..1..1..0....1..0..1..0
..1..0..1..0....0..1..0..0....1..0..1..0....0..1..0..1....0..1..0..1
..0..1..0..0....1..0..1..0....1..0..1..1....1..1..0..1....0..1..0..0
..0..1..0..1....1..0..1..1....1..1..1..1....0..1..1..0....1..0..1..0
..1..1..1..0....0..1..1..0....1..1..1..1....0..1..0..0....1..0..1..1
..1..0..1..0....0..1..0..0....1..1..1..1....1..1..0..1....0..1..0..0
..1..0..1..1....1..1..0..1....1..1..1..1....0..1..1..0....0..1..0..0
		

Crossrefs

Cf. A208028.

Formula

Empirical: a(n) = 5*a(n-1) +62*a(n-2) -73*a(n-3) -736*a(n-4) +779*a(n-5) +3097*a(n-6) -3814*a(n-7) -4207*a(n-8) +5531*a(n-9) +2469*a(n-10) -2932*a(n-11) -644*a(n-12) +428*a(n-13).
Showing 1-10 of 10 results.