A208031 Number of 6Xn 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 0 and 1 0 1 vertically.
19, 361, 1995, 17119, 123709, 955073, 7184755, 54606513, 413322903, 3133722193, 23742848381, 179940784609, 1363558911785, 10333337050839, 78306467535059, 593415477442647, 4496952127639277, 34078343213807171, 258248804284088975
Offset: 1
Keywords
Examples
Some solutions for n=4 ..0..1..0..1....1..0..1..1....1..1..1..0....1..0..1..1....0..1..0..1 ..1..0..1..1....1..0..1..1....0..1..1..1....0..1..1..1....0..1..0..0 ..1..0..1..1....1..1..0..1....0..1..0..0....0..1..1..0....1..0..1..0 ..0..1..1..0....0..1..0..1....1..1..0..0....1..1..0..0....1..0..1..1 ..0..1..0..0....0..1..1..1....1..0..1..1....1..1..0..1....0..1..1..0 ..1..1..0..1....1..0..1..1....1..0..1..0....1..0..1..0....0..1..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 5*a(n-1) +30*a(n-2) -64*a(n-3) -157*a(n-4) +303*a(n-5) +101*a(n-6) -262*a(n-7) -23*a(n-8) +64*a(n-9) -4*a(n-11)
Comments