cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208044 Number of n X 3 0..3 arrays with new values 0..3 introduced in row major order and no element equal to any horizontal, vertical or antidiagonal neighbor (colorings ignoring permutations of colors).

This page as a plain text file.
%I A208044 #11 Mar 07 2018 02:31:01
%S A208044 2,8,44,244,1356,7540,41932,233204,1296972,7213172,40116428,223109620,
%T A208044 1240835916,6900974452,38380133836,213453141236,1187130917964,
%U A208044 6602291295860,36718991727308,204214611724276,1135750348251468
%N A208044 Number of n X 3 0..3 arrays with new values 0..3 introduced in row major order and no element equal to any horizontal, vertical or antidiagonal neighbor (colorings ignoring permutations of colors).
%C A208044 Column 3 of A208050.
%H A208044 R. H. Hardin, <a href="/A208044/b208044.txt">Table of n, a(n) for n = 1..210</a>
%F A208044 Empirical: a(n) = 7*a(n-1) - 8*a(n-2) for n>3.
%F A208044 Conjectures from _Colin Barker_, Mar 06 2018: (Start)
%F A208044 G.f.: 2*x*(1 - x)*(1 - 2*x) / (1 - 7*x + 8*x^2).
%F A208044 a(n) = (2^(-5-n)*((7-sqrt(17))^n*(-13+5*sqrt(17)) + (7+sqrt(17))^n*(13+5*sqrt(17)))) / sqrt(17) for n>1.
%F A208044 (End)
%e A208044 Some solutions for n=4:
%e A208044   0 1 0   0 1 0   0 1 2   0 1 0   0 1 2   0 1 0   0 1 2
%e A208044   2 3 2   2 3 1   2 0 3   2 3 1   2 3 0   2 3 1   2 3 0
%e A208044   1 0 1   1 2 0   3 1 2   0 2 0   0 1 3   0 2 3   0 1 2
%e A208044   2 3 2   3 1 2   0 3 1   1 3 1   2 0 1   3 1 2   2 3 1
%Y A208044 Cf. A208050.
%K A208044 nonn
%O A208044 1,1
%A A208044 _R. H. Hardin_, Feb 22 2012