cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A208073 Number of n X n 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 0 and 0 1 0 vertically.

Original entry on oeis.org

2, 16, 126, 2601, 139605, 17098225, 4412968520, 2580469555456, 3485691022698248, 10640054910525548209, 72722981173167013234455, 1123008691175260414001447481, 39309117808240836879763740048294
Offset: 1

Views

Author

R. H. Hardin Feb 23 2012

Keywords

Comments

Diagonal of A208078

Examples

			Some solutions for n=4
..1..0..1..0....1..0..1..0....0..1..0..0....1..0..1..0....1..0..1..1
..1..0..1..1....1..1..0..1....0..1..1..0....0..1..0..0....0..1..1..1
..0..1..0..1....0..1..1..1....1..1..1..1....1..1..1..1....0..1..1..1
..1..1..1..0....1..1..1..1....1..0..1..1....1..1..1..1....1..0..1..0
		

A208074 Number of nX4 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 0 and 0 1 0 vertically.

Original entry on oeis.org

10, 100, 510, 2601, 16065, 99225, 572040, 3297856, 19523816, 115584001, 677087229, 3966354441, 23333593542, 137268768004, 806149925790, 4734344981025, 27823208376315, 163513839286009, 960678492827472, 5644189938974976
Offset: 1

Views

Author

R. H. Hardin Feb 23 2012

Keywords

Comments

Column 4 of A208078

Examples

			Some solutions for n=4
..1..0..1..1....1..1..1..0....0..1..0..0....1..0..1..0....1..0..1..0
..1..0..1..0....0..1..1..1....0..1..0..1....0..1..0..0....1..1..0..1
..1..1..0..0....1..1..0..1....1..0..1..1....1..1..1..1....0..1..1..1
..0..1..1..1....1..0..1..0....1..0..1..0....1..1..1..1....1..1..1..1
		

Formula

Empirical: a(n) = 2*a(n-1) -6*a(n-2) +68*a(n-3) +423*a(n-4) +628*a(n-5) +3408*a(n-6) -1012*a(n-7) -25184*a(n-8) -35190*a(n-9) -153252*a(n-10) -83452*a(n-11) +428108*a(n-12) +439718*a(n-13) +2263840*a(n-14) +1738832*a(n-15) -2514276*a(n-16) -833180*a(n-17) -13759668*a(n-18) -9299992*a(n-19) +5925976*a(n-20) -4763970*a(n-21) +39538848*a(n-22) +18089492*a(n-23) -3827918*a(n-24) +16850326*a(n-25) -54844740*a(n-26) -11657172*a(n-27) -4162646*a(n-28) -14808148*a(n-29) +34708980*a(n-30) +2471388*a(n-31) +4632424*a(n-32) +5367702*a(n-33) -10574840*a(n-34) +162700*a(n-35) -1570596*a(n-36) -839990*a(n-37) +1515040*a(n-38) -110280*a(n-39) +231228*a(n-40) +46604*a(n-41) -89320*a(n-42) +9032*a(n-43) -14064*a(n-44) -526*a(n-45) +1796*a(n-46) -180*a(n-47) +287*a(n-48) -8*a(n-49) -6*a(n-50) -a(n-52)

A208075 Number of nX5 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 0 and 0 1 0 vertically.

Original entry on oeis.org

16, 256, 1968, 15129, 139605, 1288225, 11204720, 97456384, 865369648, 7684100281, 67718944293, 596797965729, 5274143802564, 46609731345424, 411483568613260, 3632690477958025, 32082757563158885, 283344628203780049
Offset: 1

Views

Author

R. H. Hardin Feb 23 2012

Keywords

Comments

Column 5 of A208078

Examples

			Some solutions for n=4
..1..0..1..1..1....0..1..1..0..1....1..1..1..1..1....0..1..0..1..1
..1..1..1..1..1....1..1..1..1..1....0..1..0..1..1....1..0..1..1..1
..0..1..1..1..1....1..1..1..1..0....0..1..0..1..0....1..0..1..1..1
..1..1..1..1..1....1..1..0..1..1....1..0..1..1..0....0..1..0..1..0
		

Formula

Empirical: a(n) = 4*a(n-1) -9*a(n-2) +224*a(n-3) +1680*a(n-4) +2372*a(n-5) +20805*a(n-6) -45404*a(n-7) -486823*a(n-8) -689588*a(n-9) -3768816*a(n-10) +1453732*a(n-11) +44174994*a(n-12) +51700152*a(n-13) +250362138*a(n-14) +121540684*a(n-15) -1466563760*a(n-16) -1100186580*a(n-17) -7139675534*a(n-18) -4821934776*a(n-19) +23901334370*a(n-20) +7281191012*a(n-21) +104816462896*a(n-22) +63881015740*a(n-23) -211010508955*a(n-24) +24078972460*a(n-25) -859950960795*a(n-26) -374360558188*a(n-27) +1008165109024*a(n-28) -492616735992*a(n-29) +4062542585755*a(n-30) +932245186620*a(n-31) -2388182948337*a(n-32) +2086352365080*a(n-33) -11147849651040*a(n-34) -645211007608*a(n-35) +2189989379868*a(n-36) -3881195475824*a(n-37) +17760743489068*a(n-38) -1066930676904*a(n-39) +858847026144*a(n-40) +3520134437624*a(n-41) -16307759247092*a(n-42) +2099148372528*a(n-43) -2988254757940*a(n-44) -1583448678360*a(n-45) +8635975575904*a(n-46) -1404389852328*a(n-47) +2049018643241*a(n-48) +348594817500*a(n-49) -2730271504991*a(n-50) +486313065896*a(n-51) -672992963568*a(n-52) -24677820812*a(n-53) +522708334715*a(n-54) -96374043492*a(n-55) +122207652727*a(n-56) -4484066212*a(n-57) -59337110704*a(n-58) +11050406804*a(n-59) -12670803598*a(n-60) +1122608440*a(n-61) +3738597850*a(n-62) -693034340*a(n-63) +728435920*a(n-64) -95918692*a(n-65) -114828510*a(n-66) +20288776*a(n-67) -21076750*a(n-68) +3523252*a(n-69) +1455216*a(n-70) -177364*a(n-71) +257619*a(n-72) -45964*a(n-73) -5661*a(n-74) -604*a(n-75) -960*a(n-76) +128*a(n-77) +5*a(n-78) +4*a(n-79) +a(n-80)

A208076 Number of nX6 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 0 and 0 1 0 vertically.

Original entry on oeis.org

26, 676, 7722, 88209, 1228095, 17098225, 223058440, 2909955136, 38883428584, 519568497721, 6878039830935, 91051386147225, 1209832312020990, 16075474357340836, 213279261525196790, 2829654813636106225
Offset: 1

Views

Author

R. H. Hardin Feb 23 2012

Keywords

Comments

Column 6 of A208078

Examples

			Some solutions for n=4
..0..1..0..1..0..1....1..1..0..1..0..0....1..0..1..0..1..1....1..1..1..1..0..1
..1..0..1..1..0..0....1..0..1..0..1..0....0..1..1..1..1..0....0..1..0..1..1..0
..1..1..1..1..1..1....1..1..1..0..1..1....0..1..1..1..1..0....0..1..0..1..1..0
..1..1..0..1..1..1....0..1..1..1..0..1....1..1..1..1..1..1....1..1..1..1..1..1
		

A208077 Number of n X 7 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 0 and 0 1 0 vertically.

Original entry on oeis.org

42, 1764, 30114, 514089, 10751415, 224850025, 4412968520, 86610135616, 1738407943480, 34892708070025, 694522498347405, 13824134823318561, 276034376753148762, 5511735679904794404, 109923500301084440190
Offset: 1

Views

Author

R. H. Hardin, Feb 23 2012

Keywords

Comments

Column 7 of A208078.

Examples

			Some solutions for n=4
..0..1..0..1..1..0..1....0..1..1..0..1..0..0....0..1..0..1..1..1..1
..0..1..1..1..1..1..1....1..1..1..0..1..0..1....1..0..1..0..1..1..1
..1..0..1..0..1..1..1....1..1..1..1..0..1..1....1..1..1..0..1..0..0
..1..1..1..1..0..1..0....0..1..1..1..0..1..0....1..1..0..1..1..1..0
		

Crossrefs

Cf. A208078.

A208079 Number of 4 X n 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 0 and 0 1 0 vertically.

Original entry on oeis.org

9, 81, 441, 2601, 15129, 88209, 514089, 2996361, 17464041, 101787921, 593263449, 3457792809, 20153493369, 117463167441, 684625511241, 3990289900041, 23257113888969, 135552393433809, 790057246713849, 4604791086849321
Offset: 1

Views

Author

R. H. Hardin, Feb 23 2012

Keywords

Comments

Row 4 of A208078.

Examples

			Some solutions for n=4:
..1..0..1..0....1..1..0..1....1..1..1..1....0..1..1..0....1..1..1..0
..1..0..1..1....1..0..1..0....0..1..1..0....1..1..0..0....0..1..1..1
..0..1..0..1....1..0..1..1....0..1..1..1....1..0..1..1....1..1..0..1
..1..1..1..0....1..1..0..1....1..1..0..1....0..1..1..1....1..0..1..0
		

Formula

Empirical: a(n) = 5*a(n-1) + 5*a(n-2) - a(n-3).
Conjectures from Colin Barker, Jan 20 2018: (Start)
G.f.: 9*x*(1 + 4*x - x^2) / ((1 + x)*(1 - 6*x + x^2)).
a(n) = (9/4)*(2*(-1)^n + (3-2*sqrt(2))^n + (3+2*sqrt(2))^n).
(End)

A208080 Number of 5 X n 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 0 and 0 1 0 vertically.

Original entry on oeis.org

15, 225, 1785, 16065, 139605, 1228095, 10751415, 94313535, 826627095, 7247786265, 63537791985, 557042877105, 4883512293885, 42813574729335, 375342984092895, 3290607987017295, 28848520578042495, 252912991131598545
Offset: 1

Views

Author

R. H. Hardin, Feb 23 2012

Keywords

Comments

Row 5 of A208078.

Examples

			Some solutions for n=4:
..1..0..1..0....1..1..0..0....1..1..0..0....1..0..1..1....1..0..1..1
..0..1..0..1....0..1..1..0....0..1..1..1....1..1..1..1....0..1..1..0
..1..1..0..1....0..1..1..1....1..0..1..1....0..1..1..1....1..1..0..0
..1..0..1..0....1..1..0..1....1..0..1..0....0..1..1..0....1..0..1..1
..0..1..1..1....1..0..1..1....1..1..0..1....1..0..1..0....0..1..1..1
		

Formula

Empirical: a(n) = 4*a(n-1) +40*a(n-2) +24*a(n-3) -70*a(n-4) -28*a(n-5) +36*a(n-6) -a(n-8).
Empirical g.f.: 15*x*(1 - x)*(1 + 12*x + 31*x^2 + 2*x^3 - 25*x^4 + 2*x^5 + x^6) / (1 - 4*x - 40*x^2 - 24*x^3 + 70*x^4 + 28*x^5 - 36*x^6 + x^8). - Colin Barker, Jan 20 2018

A208081 Number of 6 X n 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 0 and 0 1 0 vertically.

Original entry on oeis.org

25, 625, 7225, 99225, 1288225, 17098225, 224850025, 2968615225, 39126818025, 516077008225, 6804820046025, 89738392111225, 1183352776011025, 15604910211748225, 205780172363700025, 2713612593438576025
Offset: 1

Views

Author

R. H. Hardin, Feb 23 2012

Keywords

Comments

Row 6 of A208078.

Examples

			Some solutions for n=4:
..1..1..0..0....1..1..0..0....0..1..0..1....1..1..1..1....1..1..0..1
..1..1..0..1....0..1..0..1....1..0..1..0....0..1..1..1....1..0..1..0
..1..0..1..1....0..1..1..1....1..0..1..0....1..0..1..1....1..0..1..1
..0..1..1..0....1..0..1..0....1..1..0..1....1..0..1..0....1..1..0..1
..0..1..1..0....1..0..1..1....0..1..1..1....1..1..0..0....1..1..1..1
..1..0..1..1....1..1..1..1....0..1..1..1....0..1..1..1....0..1..1..0
		

Formula

Empirical: a(n) = 10*a(n-1) +59*a(n-2) -216*a(n-3) -146*a(n-4) +568*a(n-5) -58*a(n-6) -208*a(n-7) +35*a(n-8) +6*a(n-9) -a(n-10).
Empirical g.f.: 25*x*(1 + 15*x - 20*x^2 - 180*x^3 + 334*x^4 - 26*x^5 - 144*x^6 + 32*x^7 + 5*x^8 - x^9) / ((1 - 16*x + 38*x^2 - 12*x^3 + x^4)*(1 + 6*x - x^2 - 16*x^3 - x^4 + 6*x^5 + x^6)). - Colin Barker, Jan 20 2018

A208082 Number of 7Xn 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 0 and 0 1 0 vertically.

Original entry on oeis.org

40, 1600, 27880, 572040, 11204720, 223058440, 4412968520, 87523832240, 1734118456440, 34372785484040, 681198922297440, 13500986230325880, 267573654641996120, 5303065945847377120, 105101332133461259960
Offset: 1

Views

Author

R. H. Hardin Feb 23 2012

Keywords

Comments

Row 7 of A208078

Examples

			Some solutions for n=4
..0..1..1..1....1..0..1..1....1..1..1..1....0..1..1..0....1..0..1..0
..0..1..0..1....0..1..0..0....1..0..1..0....0..1..0..0....1..0..1..1
..1..0..1..1....0..1..0..0....1..1..1..0....1..1..1..1....0..1..0..1
..1..0..1..1....1..1..1..1....1..1..1..1....1..0..1..1....1..1..0..0
..1..1..0..0....1..1..1..1....1..0..1..1....1..0..1..0....1..0..1..1
..1..1..1..1....1..0..1..0....0..1..0..1....0..1..0..1....0..1..1..1
..1..1..1..1....1..0..1..1....0..1..0..1....1..1..0..1....1..1..1..0
		

Formula

Empirical: a(n) = 8*a(n-1) +240*a(n-2) +212*a(n-3) -6470*a(n-4) -2816*a(n-5) +58646*a(n-6) +3528*a(n-7) -215345*a(n-8) +36778*a(n-9) +305644*a(n-10) -78492*a(n-11) -174713*a(n-12) +38956*a(n-13) +42650*a(n-14) -5016*a(n-15) -4246*a(n-16) +194*a(n-17) +156*a(n-18) -a(n-20)
Showing 1-9 of 9 results.