A208084
Number of (n+1) X (n+1) 0..1 arrays with every 2 X 2 subblock having the same number of equal edges as its horizontal neighbors and a different number from its vertical neighbors, and new values 0..1 introduced in row major order.
Original entry on oeis.org
8, 20, 134, 156, 2664, 1224, 54504, 9612, 1119906, 75492, 23025384, 592920, 473447592, 4656852, 9735152022, 36575388, 200177107272, 287266824, 4116102713928, 2256222924, 84636562515282, 17720604900, 1740322886860296
Offset: 1
Some solutions for n=4
..0..0..0..1..0....0..1..1..1..1....0..1..1..0..1....0..1..0..0..0
..1..1..1..1..1....0..0..0..0..0....0..0..0..0..0....1..1..1..1..1
..1..1..1..1..1....0..0..0..0..0....0..0..0..0..0....1..1..1..1..1
..1..0..1..0..1....0..1..0..1..0....1..0..1..0..1....0..1..0..1..0
..0..1..0..1..0....1..0..1..0..1....0..1..0..1..0....1..0..1..0..1
A208086
Number of 4 X (n+1) 0..1 arrays with every 2 X 2 subblock having the same number of equal edges as its horizontal neighbors and a different number from its vertical neighbors, and new values 0..1 introduced in row major order.
Original entry on oeis.org
24, 56, 134, 344, 888, 2318, 6056, 15848, 41478, 108584, 284264, 744206, 1948344, 5100824, 13354118, 34961528, 91530456, 239629838, 627359048, 1642447304, 4299982854, 11257501256, 29472520904, 77160061454, 202007663448
Offset: 1
Some solutions for n=4:
..0..0..1..0..0....0..0..0..1..1....0..0..0..1..0....0..1..0..1..0
..1..1..1..1..1....0..1..0..1..0....0..1..0..1..0....1..0..1..0..1
..1..1..1..1..1....1..0..1..0..1....1..0..1..0..1....1..0..1..0..1
..0..1..0..1..0....1..1..1..1..1....1..0..0..0..0....0..1..0..1..0
A208087
Number of 6 X (n+1) 0..1 arrays with every 2 X 2 subblock having the same number of equal edges as its horizontal neighbors and a different number from its vertical neighbors, and new values 0..1 introduced in row major order.
Original entry on oeis.org
72, 168, 402, 1032, 2664, 6954, 18168, 47544, 124434, 325752, 852792, 2232618, 5845032, 15302472, 40062354, 104884584, 274591368, 718889514, 1882077144, 4927341912, 12899948562, 33772503768, 88417562712, 231480184362
Offset: 1
Some solutions for n=4:
..0..1..0..1..1....0..0..0..0..1....0..0..1..0..1....0..0..0..1..0
..0..1..0..1..0....1..1..1..1..1....1..0..1..0..1....1..1..1..1..1
..1..0..1..0..1....1..1..1..1..1....0..1..0..1..0....1..1..1..1..1
..1..0..1..0..1....0..1..0..1..0....0..0..0..0..0....1..0..1..0..1
..0..1..0..1..0....1..0..1..0..1....0..0..0..0..0....0..1..0..1..0
..0..0..0..0..0....0..0..1..1..1....1..0..1..0..1....1..1..0..1..0
A208088
Number of 7 X (n+1) 0..1 arrays with every 2 X 2 subblock having the same number of equal edges as its horizontal neighbors and a different number from its vertical neighbors, and new values 0..1 introduced in row major order.
Original entry on oeis.org
108, 180, 288, 468, 756, 1224, 1980, 3204, 5184, 8388, 13572, 21960, 35532, 57492, 93024, 150516, 243540, 394056, 637596, 1031652, 1669248, 2700900, 4370148, 7071048, 11441196, 18512244, 29953440, 48465684, 78419124, 126884808
Offset: 1
Some solutions for n=4:
..0..0..0..1..0....0..1..0..1..1....0..0..0..0..0....0..0..0..1..0
..0..1..0..1..0....0..0..0..0..0....0..1..0..1..0....1..1..1..1..1
..1..0..1..0..1....0..0..0..0..0....1..0..1..0..1....1..1..1..1..1
..1..0..1..0..1....1..0..1..0..1....0..0..0..0..0....1..0..1..0..1
..0..1..0..1..0....0..1..0..1..0....0..0..0..0..0....0..1..0..1..0
..1..1..1..1..1....0..0..0..0..0....0..1..0..1..0....0..1..0..1..0
..1..1..1..1..1....0..0..0..0..0....1..0..1..0..1....1..0..1..0..1
A208089
Number of 8 X (n+1) 0..1 arrays with every 2 X 2 subblock having the same number of equal edges as its horizontal neighbors and a different number from its vertical neighbors, and new values 0..1 introduced in row major order.
Original entry on oeis.org
216, 504, 1206, 3096, 7992, 20862, 54504, 142632, 373302, 977256, 2558376, 6697854, 17535096, 45907416, 120187062, 314653752, 823774104, 2156668542, 5646231432, 14782025736, 38699845686, 101317511304, 265252688136, 694440553086
Offset: 1
Some solutions for n=4:
..0..1..0..0..1....0..0..0..1..0....0..1..0..0..1....0..0..0..1..1
..1..1..1..1..1....0..1..0..1..0....1..1..1..1..1....0..1..0..1..0
..1..1..1..1..1....1..0..1..0..1....1..1..1..1..1....1..0..1..0..1
..1..0..1..0..1....1..0..1..0..1....0..1..0..1..0....0..0..0..0..0
..0..1..0..1..0....0..1..0..1..0....1..0..1..0..1....0..0..0..0..0
..1..1..1..1..1....0..1..0..1..0....0..0..0..0..0....1..1..1..1..1
..1..1..1..1..1....1..0..1..0..1....0..0..0..0..0....1..1..1..1..1
..1..0..1..0..1....0..0..0..0..0....1..0..1..1..0....0..0..1..0..0
Showing 1-5 of 5 results.
Comments