A208105 Number of nX5 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 1 1 and 1 1 0 vertically.
15, 225, 611, 1805, 6235, 22995, 89815, 361261, 1483295, 6161925, 25792655, 108453119, 457324951, 1931799849, 8168996779, 34567178365, 146331546515, 619615536891, 2624066727095, 11113979515925, 47075003890759
Offset: 1
Keywords
Examples
Some solutions for n=7 ..0..1..1..1..0....0..1..1..1..0....1..0..0..1..1....1..1..0..0..1 ..1..1..0..0..1....0..0..1..1..0....1..0..1..1..0....0..0..1..1..0 ..0..1..1..1..0....1..0..1..1..0....1..1..0..1..1....1..1..0..0..1 ..1..1..0..0..1....0..1..1..1..0....1..0..1..1..0....0..0..1..1..0 ..0..1..1..1..0....1..0..1..1..1....1..0..0..1..1....1..1..0..0..1 ..1..1..0..0..1....0..1..1..1..0....1..1..1..1..0....0..0..1..1..0 ..0..1..1..1..0....1..0..1..1..1....1..0..0..1..1....1..1..0..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 7*a(n-1) -8*a(n-2) -27*a(n-3) +45*a(n-4) +24*a(n-5) -51*a(n-6) -3*a(n-7) +16*a(n-8) -a(n-9) -a(n-10) for n>11
Comments