A208109 Number of 4 X n 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 1 1 and 1 1 0 vertically.
9, 81, 171, 361, 1805, 9025, 25555, 72361, 292941, 1185921, 3801699, 12187081, 45351581, 168766081, 570110035, 1925893225, 6923341485, 24888533121, 85943617731, 296775442441, 1051712556989, 3727058052481, 12988702493491
Offset: 1
Keywords
Examples
Some solutions for n=8: ..0..1..1..1..0..1..1..1....1..0..1..1..1..0..1..1....0..1..1..1..1..1..1..1 ..1..1..1..0..0..1..1..0....0..0..1..1..1..0..1..1....1..0..1..1..1..0..1..1 ..0..1..1..0..0..1..1..1....0..0..1..1..1..1..1..1....0..0..1..1..1..0..1..1 ..0..1..1..1..0..1..1..0....1..1..1..1..1..0..1..1....0..1..1..1..1..0..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A208108.
Formula
Empirical: a(n) = 2*a(n-1) + 8*a(n-3) + 61*a(n-4) - 66*a(n-5) - 48*a(n-6) - 252*a(n-8) + 216*a(n-9).
Empirical g.f.: x*(9 + 63*x + 9*x^2 - 53*x^3 - 114*x^4 - 300*x^5 - 36*x^6 - 36*x^7 + 216*x^8) / ((1 - 2*x - 7*x^2 + 6*x^3)*(1 + 7*x^2 - 12*x^4 - 36*x^6)). - Colin Barker, Jun 28 2018
Comments