A208111 Number of 6 X n 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 1 1 and 1 1 0 vertically.
22, 484, 990, 2025, 22995, 261121, 768544, 2262016, 18608992, 153091129, 558232641, 2035543689, 13946476806, 95553937924, 397367788702, 1652481969121, 10150368975235, 62348632093225, 281328849436320, 1269409109197824
Offset: 1
Keywords
Examples
Some solutions for n=5: ..1..1..1..0..0....0..0..1..1..0....0..1..1..0..0....1..1..1..1..0 ..1..1..1..0..0....0..0..1..1..1....1..1..1..0..1....1..1..1..0..1 ..1..1..1..1..1....1..1..1..1..0....0..1..1..1..0....1..1..1..0..0 ..1..1..1..0..0....0..0..1..1..0....0..1..1..0..0....1..1..1..0..0 ..1..1..1..1..1....1..1..1..1..0....1..1..1..1..0....1..1..1..0..1 ..1..1..1..0..0....0..0..1..1..1....0..1..1..0..1....1..1..1..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A208108.
Formula
Empirical: a(n) = 2*a(n-1) + 21*a(n-3) + 438*a(n-4) - 456*a(n-5) - 399*a(n-6) - 7220*a(n-8) + 6859*a(n-9).
Empirical g.f.: x*(22 + 440*x + 22*x^2 - 417*x^3 - 855*x^4 - 7619*x^5 - 361*x^6 - 361*x^7 + 6859*x^8) / ((1 - 2*x - 20*x^2 + 19*x^3)*(1 + 20*x^2 - 38*x^4 - 361*x^6)). - Colin Barker, Jun 28 2018
Comments