cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A208113 Number of n X n 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 1 and 0 1 1 vertically.

Original entry on oeis.org

2, 16, 90, 625, 7315, 130321, 1432600, 17850625, 339961440, 8208541201, 137250396283, 2528484794641, 64191779662920, 1915940360359936, 43397063924977512, 1065586805357114881, 33367357471586657167
Offset: 1

Views

Author

R. H. Hardin Feb 23 2012

Keywords

Comments

Diagonal of A208118

Examples

			Some solutions for n=4
..1..1..0..0....0..1..1..1....0..1..1..1....1..1..0..1....0..1..1..0
..1..1..1..0....0..1..1..1....1..0..0..1....1..0..1..1....1..0..1..1
..1..1..0..0....0..1..1..1....0..1..1..1....1..0..0..1....0..1..1..0
..1..1..0..0....0..1..1..1....1..0..0..1....0..0..1..1....1..0..1..1
		

A208114 Number of n X 4 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 1 and 0 1 1 vertically.

Original entry on oeis.org

9, 81, 225, 625, 1225, 2401, 3969, 6561, 9801, 14641, 20449, 28561, 38025, 50625, 65025, 83521, 104329, 130321, 159201, 194481, 233289, 279841, 330625, 390625, 455625, 531441, 613089, 707281, 808201, 923521, 1046529, 1185921, 1334025
Offset: 1

Views

Author

R. H. Hardin, Feb 23 2012

Keywords

Comments

Column 4 of A208118.

Examples

			Some solutions for n=4:
..0..1..1..1....1..1..0..0....1..1..0..1....1..1..1..0....1..0..0..1
..1..0..0..1....0..0..1..1....1..0..1..1....0..1..1..1....0..1..1..0
..0..0..1..1....1..1..0..0....1..0..0..1....1..1..1..0....1..0..0..1
..1..0..0..1....0..0..1..1....0..0..1..1....0..1..1..0....0..1..1..0
		

Crossrefs

Cf. A208118.

Formula

Empirical: a(n) = 2*a(n-1) + 2*a(n-2) - 6*a(n-3) + 6*a(n-5) - 2*a(n-6) - 2*a(n-7) + a(n-8).
Conjectures from Colin Barker, Jun 28 2018: (Start)
G.f.: x*(9 + 63*x + 45*x^2 + 67*x^3 + 11*x^4 - 3*x^5 - x^6 + x^7) / ((1 - x)^5*(1 + x)^3).
a(n) = n^4 + 4*n^3 + 6*n^2 + 4*n + 1 for n even.
a(n) = n^4 + 4*n^3 + 4*n^2 for n odd.
(End)

A208115 Number of n X 5 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 1 and 0 1 1 vertically.

Original entry on oeis.org

15, 225, 825, 3025, 7315, 17689, 34713, 68121, 117711, 203401, 322465, 511225, 761475, 1134225, 1611345, 2289169, 3133423, 4289041, 5697321, 7568001, 9807315, 12709225, 16131625, 20475625, 25534575, 31843449, 39111633, 48038761, 58227331
Offset: 1

Views

Author

R. H. Hardin, Feb 23 2012

Keywords

Comments

Column 5 of A208118.

Examples

			Some solutions for n=4:
..1..0..0..1..1....0..0..1..1..0....0..0..1..1..1....1..0..1..1..0
..0..1..1..1..0....1..1..0..1..1....0..1..1..1..1....1..0..1..1..1
..1..0..0..1..1....0..0..1..1..0....0..0..1..1..1....0..0..1..1..0
..0..0..1..1..0....1..0..0..1..1....0..0..1..1..1....0..0..1..1..0
		

Crossrefs

Cf. A208118.

Formula

Empirical: a(n) = 2*a(n-1) + 4*a(n-2) - 10*a(n-3) - 5*a(n-4) + 20*a(n-5) - 20*a(n-7) + 5*a(n-8) + 10*a(n-9) - 4*a(n-10) - 2*a(n-11) + a(n-12).
Empirical g.f.: x*(15 + 195*x + 315*x^2 + 625*x^3 + 290*x^4 + 34*x^5 - 50*x^6 + 14*x^7 + 7*x^8 - 5*x^9 - x^10 + x^11) / ((1 - x)^7*(1 + x)^5). - Colin Barker, Jun 28 2018

A208116 Number of nX6 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 1 and 0 1 1 vertically.

Original entry on oeis.org

25, 625, 3025, 14641, 43681, 130321, 303601, 707281, 1413721, 2825761, 5085025, 9150625, 15249025, 25411681, 39929761, 62742241, 94109401, 141158161, 203889841, 294499921, 412293025, 577200625, 787083025, 1073283121, 1431033241
Offset: 1

Views

Author

R. H. Hardin Feb 23 2012

Keywords

Comments

Column 6 of A208118

Examples

			Some solutions for n=4
..1..0..0..1..1..1....1..0..1..1..0..0....0..1..1..1..0..1....0..0..1..1..1..0
..0..0..1..1..1..0....0..0..1..1..0..1....1..0..1..1..1..0....1..1..1..0..1..1
..1..0..0..1..1..1....0..0..1..1..0..0....0..1..1..0..0..1....0..0..1..1..0..0
..0..0..1..1..0..0....0..0..1..1..0..0....1..0..1..1..0..0....1..1..0..0..1..1
		

Formula

Empirical: a(n) = 2*a(n-1) +6*a(n-2) -14*a(n-3) -14*a(n-4) +42*a(n-5) +14*a(n-6) -70*a(n-7) +70*a(n-9) -14*a(n-10) -42*a(n-11) +14*a(n-12) +14*a(n-13) -6*a(n-14) -2*a(n-15) +a(n-16)

A208117 Number of nX7 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 1 and 0 1 1 vertically.

Original entry on oeis.org

40, 1600, 9240, 53361, 175560, 577600, 1432600, 3553225, 7419360, 15492096, 28791840, 53509225, 91408240, 156150016, 250232400, 401000625, 611163000, 931470400, 1363358920, 1995498241, 2824994040, 3999297600, 5505737640
Offset: 1

Views

Author

R. H. Hardin Feb 23 2012

Keywords

Comments

Column 7 of A208118

Examples

			Some solutions for n=4
..1..0..1..1..1..0..1....1..1..1..0..1..1..0....1..1..1..1..0..0..1
..0..1..1..1..1..0..1....1..1..1..1..0..0..1....1..0..1..1..1..0..0
..0..0..1..1..0..0..1....1..1..0..0..1..1..0....0..0..1..1..0..0..1
..0..0..1..1..1..0..1....1..1..1..1..0..0..1....0..0..1..1..1..0..0
		

Formula

Empirical: a(n) = 2*a(n-1) +6*a(n-2) -14*a(n-3) -14*a(n-4) +42*a(n-5) +14*a(n-6) -70*a(n-7) +70*a(n-9) -14*a(n-10) -42*a(n-11) +14*a(n-12) +14*a(n-13) -6*a(n-14) -2*a(n-15) +a(n-16)

A208119 Number of 4 X n 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 1 and 0 1 1 vertically.

Original entry on oeis.org

9, 81, 225, 625, 3025, 14641, 53361, 194481, 815409, 3418801, 13359025, 52200625, 211266225, 855036081, 3400172721, 13521270961, 54243807409, 217611987121, 869173967025, 3471607400625, 13896604674225, 55627148806321
Offset: 1

Views

Author

R. H. Hardin, Feb 23 2012

Keywords

Comments

Row 4 of A208118.

Examples

			Some solutions for n=4:
..1..0..1..1....0..1..1..1....1..0..1..1....1..1..0..1....0..1..1..0
..0..1..1..1....0..1..1..1....0..0..1..1....1..0..1..1....1..0..1..1
..1..0..0..1....0..1..1..1....0..0..1..1....1..0..0..1....0..1..1..0
..0..0..1..1....0..1..1..1....0..0..1..1....0..0..1..1....1..0..1..1
		

Crossrefs

Cf. A208118.

Formula

Empirical: a(n) = 5*a(n-1) - 10*a(n-2) + 30*a(n-3) - 120*a(n-5) + 160*a(n-6) - 320*a(n-7) + 256*a(n-8).
Empirical g.f.: x*(9 + 36*x - 90*x^2 + 40*x^3 - 280*x^4 + 96*x^5 - 64*x^6 + 256*x^7) / ((1 - x)*(1 - 2*x)*(1 + 2*x)*(1 - 4*x)*(1 + 2*x^2)*(1 + 8*x^2)). - Colin Barker, Jun 28 2018

A208120 Number of 5Xn 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 1 and 0 1 1 vertically.

Original entry on oeis.org

12, 144, 420, 1225, 7315, 43681, 175560, 705600, 3503640, 17397241, 76934095, 340218025, 1602280260, 7546049424, 34331884092, 156198057961, 724234470091, 3358015935121, 15408300507600, 70701190560000, 326286103743600
Offset: 1

Views

Author

R. H. Hardin Feb 23 2012

Keywords

Comments

Row 5 of A208118

Examples

			Some solutions for n=4
..1..0..1..1....1..0..1..1....0..1..1..0....0..1..1..1....1..0..0..1
..1..1..0..1....1..0..0..1....0..1..1..1....0..0..1..1....0..1..1..0
..0..0..1..1....1..0..0..1....0..1..1..0....0..1..1..1....1..0..0..1
..1..0..0..1....1..0..0..1....0..0..1..1....0..0..1..1....0..1..1..0
..0..0..1..1....1..0..0..1....0..1..1..0....0..1..1..1....1..0..0..1
		

Formula

Empirical: a(n) = a(n-1) -6*a(n-2) +29*a(n-3) +247*a(n-4) +246*a(n-5) +1656*a(n-6) -9936*a(n-8) -8856*a(n-9) -53352*a(n-10) -37584*a(n-11) +46656*a(n-12) -46656*a(n-13) +279936*a(n-14)

A208121 Number of 6 X n 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 1 and 0 1 1 vertically.

Original entry on oeis.org

16, 256, 784, 2401, 17689, 130321, 577600, 2560000, 15054400, 88529281, 443060401, 2217373921, 12151975696, 66597028096, 346652467984, 1804403844961, 9669593502409, 51818243883121, 273150984198400, 1439868559360000
Offset: 1

Views

Author

R. H. Hardin, Feb 23 2012

Keywords

Comments

Row 6 of A208118.

Examples

			Some solutions for n=4:
..1..0..0..1....0..1..1..1....1..1..0..1....1..1..1..0....0..0..1..1
..1..1..1..0....0..0..1..1....1..0..1..1....1..0..1..1....0..1..1..1
..1..0..0..1....0..0..1..1....1..1..0..0....0..1..1..0....0..0..1..1
..0..1..1..0....0..0..1..1....0..0..1..1....0..0..1..1....0..1..1..1
..1..0..0..1....0..0..1..1....1..1..0..0....0..1..1..0....0..0..1..1
..0..1..1..0....0..0..1..1....0..0..1..1....0..0..1..1....0..1..1..1
		

Crossrefs

Cf. A208118.

Formula

Empirical: a(n) = 7*a(n-1) - 21*a(n-2) + 84*a(n-3) - 756*a(n-5) + 1701*a(n-6) - 5103*a(n-7) + 6561*a(n-8).
Empirical g.f.: x*(16 + 144*x - 672*x^2 + 945*x^3 - 4158*x^4 + 3159*x^5 + 1458*x^6 + 6561*x^7) / ((1 - 3*x)*(1 + 3*x)*(1 - 7*x + 9*x^2)*(1 + 21*x^2 + 81*x^4)). - Colin Barker, Jun 28 2018

A208122 Number of 7Xn 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 1 and 0 1 1 vertically.

Original entry on oeis.org

20, 400, 1260, 3969, 34713, 303601, 1432600, 6760000, 45648200, 308248249, 1680152229, 9157915809, 56635398540, 350250912400, 2009057864020, 11524062773521, 69120684953057, 414582008296369, 2421339816495600
Offset: 1

Views

Author

R. H. Hardin Feb 23 2012

Keywords

Comments

Row 7 of A208118

Examples

			Some solutions for n=4
..0..0..1..1....0..0..1..1....0..0..1..1....1..1..1..1....1..1..0..0
..1..0..1..1....1..0..0..1....1..1..1..1....0..1..1..1....0..0..1..1
..0..0..1..1....0..0..1..1....0..0..1..1....0..1..1..1....1..1..0..0
..1..0..1..1....1..0..0..1....1..1..0..0....0..0..1..1....0..0..1..1
..0..0..1..1....0..0..1..1....0..0..1..1....0..1..1..0....1..1..0..0
..1..0..0..1....1..0..0..1....1..1..0..0....0..0..1..1....0..0..1..1
..0..0..1..1....0..0..1..1....0..0..1..1....0..1..1..0....1..1..0..0
		

Formula

Empirical: a(n) = a(n-1) -12*a(n-2) +55*a(n-3) +805*a(n-4) +900*a(n-5) +10320*a(n-6) -123840*a(n-8) -129600*a(n-9) -1391040*a(n-10) -1140480*a(n-11) +2985984*a(n-12) -2985984*a(n-13) +35831808*a(n-14)
Showing 1-9 of 9 results.