This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A208135 #14 Aug 03 2025 06:52:36 %S A208135 9,18,21,27,33,35,36,39,42,45,49,54,57,63,65,66,70,72,75,78,84,90,93, %T A208135 98,99,105,108,114,126,129,130,132,133,135,140,141,144,147,150,153, %U A208135 155,156,159,161,165,168,175,177,180,183,186,189,195,196,198,201 %N A208135 Numbers that match polynomials over {0,1} that have a factor containing a negative coefficient. %C A208135 The polynomials having coefficients in {0,1} are enumerated at A206073. They include the following: %C A208135 p(1,x) = 1 %C A208135 p(2,x) = x %C A208135 p(3,x) = x + 1 %C A208135 p(9,x) = x^3 + 1 = (x + 1)*(x^2 - x + 1) %C A208135 p(18,x) = x*(x + 1)*(x^2 - x + 1) %C A208135 p(33,x) = (x + 1)*(x^4 - x^3 + x^2 - x + 1). %C A208135 A208135 gives those n for which p(n,x) has a factor containing a negative coefficient; A208136 is a subsequence of A208135 in which, for each p(n,x), there is a factor containing a negative coefficient, and that factor has not already occurred for some p(k,x) with k<n. %e A208135 The first few polynomial factors having a negative coefficient are as follows: %e A208135 x^2 - x + 1 divides p(n,x) for n=9,18,21,27,36,42,... %e A208135 x^4 - x^3 + x^2 - x + 1 divides p(n,x) for n=33,66,... %e A208135 x^3 - x^2 + 1 divides p(n,x) for n=35,70,... %e A208135 x^4 - x^3 + x^2 + 1 divides p(n,x) for n=39,... %e A208135 x^3 - x + 1 divides p(n,x) for n=49,... %e A208135 x^4 + x^2 - x + 1 divides p(n,x) for n=57,... %e A208135 In A208136, the duplicates (such as 18, 21, 27, 36, 42, ...) are omitted. %t A208135 t = Table[IntegerDigits[n, 2], {n, 1, 3000}]; %t A208135 b[n_] := Reverse[Table[x^k, {k, 0, n}]]; %t A208135 p[n_, x_] := p[n, x] = t[[n]].b[-1 + Length[t[[n]]]]; %t A208135 TableForm[Table[{n, p[n, x], Factor[p[n, x]]}, {n, 1, 250}]]; %t A208135 Map[#[[1]] &, DeleteCases[Table[{z, %t A208135 Select[Flatten[Table[CoefficientList[#[[n]], x], %t A208135 {n, 1, Length[#]}]] &[Factor[p[z, x]]], # < 0 &]}, %t A208135 {z, 1, 250}], {_, {}}]] %t A208135 (* _Peter J. C. Moses_, Feb 22 2012 *) %Y A208135 Cf. A208136, A206073, A206284. %K A208135 nonn %O A208135 1,1 %A A208135 _Clark Kimberling_, Feb 23 2012