This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A208136 #14 Aug 03 2025 16:08:50 %S A208136 9,33,35,39,49,57,65,129,133,135,147,159,161,183,201,215,225,235,237, %T A208136 249,259,267,287,291,303,371,385,393,413,417,423,427,459,489,497,519, %U A208136 525,527,537,543,573,579,591,605,609,615,633,651 %N A208136 Subsequence of A208135 with numbers that match duplicate factors deleted. %C A208136 The polynomials having coefficients in {0,1} are enumerated at A206073. They include the following: %C A208136 p(1,x) = 1 %C A208136 p(2,x) = x %C A208136 p(3,x) = x + 1 %C A208136 p(9,x) = x^3 + 1 = (x + 1)*(x^2 - x + 1) %C A208136 p(18,x) = x*(x + 1)*(x^2 - x + 1) %C A208136 p(33,x) = (x + 1)*(x^4 - x^3 + x^2 - x + 1). %C A208136 A208135 gives those n for which p(n,x) has a factor containing a negative coefficient; A208136 is a subsequence of A208135 in which, for each p(n,x), there is a factor containing a negative coefficient, and that factor has not already occurred for some p(k,x) with k<n. %e A208136 The first few polynomial factors having a negative coefficient are as follows: %e A208136 x^2 - x + 1 divides p(n,x) for n=9,18,21,27,36,42,... %e A208136 x^4 - x^3 + x^2 - x + 1 divides p(n,x) for n=33,66,... %e A208136 x^3 - x^2 + 1 divides p(n,x) for n=35,70,... %e A208136 x^4 - x^3 + x^2 + 1 divides p(n,x) for n=39,... %e A208136 x^3 - x + 1 divides p(n,x) for n=49,... %e A208136 x^4 + x^2 - x + 1 divides p(n,x) for n=57,... %e A208136 In A208136, the duplicates (such as 18, 21, 27, 36, 42, ...) are omitted. %t A208136 Remove["Global`*"]; %t A208136 t = Table[IntegerDigits[n, 2], {n, 1, 3000}]; %t A208136 b[n_] := Reverse[Table[x^k, {k, 0, n}]]; %t A208136 p[n_, x_] := p[n, x] = t[[n]].b[-1 + Length[t[[n]]]]; %t A208136 TableForm[Table[{n, p[n, x], Factor[p[n, x]]}, {n, 1, 900}]]; %t A208136 ans = DeleteCases[Table[{z, Cases[Sign[ %t A208136 Table[CoefficientList[#[[n]], x], {n, 1, Length[#]}] &[Factor[p[z, x]]]], {___, -1, ___}]}, {z, 1, 700}], {_, {}}]; %t A208136 n = 1; While[Length[ans] >= n, %t A208136 ans = Delete[ans, Map[Take[{#[[1]]}] &, Rest[Position[ans, Flatten[ans[[n]][[2]]]]]]]; n++]; %t A208136 Map[#[[1]] &, ans] %t A208136 (* _Peter J. C. Moses_, Feb 22 2012 *) %Y A208136 Cf. A208135, A206073, A206284. %K A208136 nonn %O A208136 1,1 %A A208136 _Clark Kimberling_, Feb 23 2012