cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208136 Subsequence of A208135 with numbers that match duplicate factors deleted.

This page as a plain text file.
%I A208136 #14 Aug 03 2025 16:08:50
%S A208136 9,33,35,39,49,57,65,129,133,135,147,159,161,183,201,215,225,235,237,
%T A208136 249,259,267,287,291,303,371,385,393,413,417,423,427,459,489,497,519,
%U A208136 525,527,537,543,573,579,591,605,609,615,633,651
%N A208136 Subsequence of A208135 with numbers that match duplicate factors deleted.
%C A208136 The polynomials having coefficients in {0,1} are enumerated at A206073. They include the following:
%C A208136   p(1,x) = 1
%C A208136   p(2,x) = x
%C A208136   p(3,x) = x + 1
%C A208136   p(9,x) = x^3 + 1 = (x + 1)*(x^2 - x + 1)
%C A208136   p(18,x) = x*(x + 1)*(x^2 - x + 1)
%C A208136   p(33,x) = (x + 1)*(x^4 - x^3 + x^2 - x + 1).
%C A208136 A208135 gives those n for which p(n,x) has a factor containing a negative coefficient; A208136 is a subsequence of A208135 in which, for each p(n,x), there is a factor containing a negative coefficient, and that factor has not already occurred for some p(k,x) with k<n.
%e A208136 The first few polynomial factors having a negative coefficient are as follows:
%e A208136   x^2 - x + 1 divides p(n,x) for n=9,18,21,27,36,42,...
%e A208136   x^4 - x^3 + x^2 - x + 1 divides p(n,x) for n=33,66,...
%e A208136   x^3 - x^2 + 1 divides p(n,x) for n=35,70,...
%e A208136   x^4 - x^3 + x^2 + 1 divides p(n,x) for n=39,...
%e A208136   x^3 - x + 1 divides p(n,x) for n=49,...
%e A208136   x^4 + x^2 - x + 1 divides p(n,x) for n=57,...
%e A208136 In A208136, the duplicates (such as 18, 21, 27, 36, 42, ...) are omitted.
%t A208136 Remove["Global`*"];
%t A208136 t = Table[IntegerDigits[n, 2], {n, 1, 3000}];
%t A208136 b[n_] := Reverse[Table[x^k, {k, 0, n}]];
%t A208136 p[n_, x_] := p[n, x] = t[[n]].b[-1 + Length[t[[n]]]];
%t A208136 TableForm[Table[{n, p[n, x], Factor[p[n, x]]}, {n, 1, 900}]];
%t A208136 ans = DeleteCases[Table[{z, Cases[Sign[
%t A208136        Table[CoefficientList[#[[n]], x], {n, 1, Length[#]}] &[Factor[p[z, x]]]], {___, -1, ___}]}, {z, 1, 700}], {_, {}}];
%t A208136 n = 1; While[Length[ans] >= n,
%t A208136 ans = Delete[ans, Map[Take[{#[[1]]}] &, Rest[Position[ans, Flatten[ans[[n]][[2]]]]]]]; n++];
%t A208136 Map[#[[1]] &, ans]
%t A208136 (* _Peter J. C. Moses_, Feb 22 2012 *)
%Y A208136 Cf. A208135, A206073, A206284.
%K A208136 nonn
%O A208136 1,1
%A A208136 _Clark Kimberling_, Feb 23 2012