A208141 Number of n X 7 0..1 arrays avoiding 0 0 1 and 0 1 1 horizontally and 0 0 1 and 1 0 1 vertically.
20, 400, 3000, 14000, 49000, 141120, 352800, 792000, 1633500, 3146000, 5725720, 9937200, 16562000, 26656000, 41616000, 63256320, 93896100, 136458000, 194579000, 272734000, 376372920, 512072000, 687700000, 912600000, 1197787500
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..1..0..1..0..0..0....1..1..0..1..0..1..0....0..0..0..0..0..0..0 ..1..0..0..0..0..0..0....1..1..0..1..0..1..0....1..1..1..0..0..0..0 ..0..0..0..0..0..0..0....0..1..0..0..0..0..0....0..0..0..0..0..0..0 ..0..0..0..0..0..0..0....0..1..0..0..0..0..0....0..0..0..0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A208142.
Formula
Empirical: a(n) = (5/36)*n^7 + (5/4)*n^6 + (155/36)*n^5 + (85/12)*n^4 + (50/9)*n^3 + (5/3)*n^2.
Conjectures from Colin Barker, Jun 28 2018: (Start)
G.f.: 20*x*(1 + 12*x + 18*x^2 + 4*x^3) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>8.
(End)
Comments