cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A208137 Number of n X n 0..1 arrays avoiding 0 0 1 and 0 1 1 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

2, 16, 108, 900, 6300, 50176, 352800, 2722500, 19111950, 144288144, 1010017008, 7505103424, 52382558592, 384598425600, 2677165603200, 19473033306276, 135229397960250, 976281270250000, 6765629202832500, 48545357372612100
Offset: 1

Views

Author

R. H. Hardin Feb 23 2012

Keywords

Comments

Diagonal of A208142

Examples

			Some solutions for n=4
..1..1..1..1....0..0..0..0....1..0..0..0....0..0..0..0....1..1..0..1
..1..1..1..1....1..0..1..0....0..1..0..0....0..1..0..0....1..1..0..1
..1..1..1..1....0..0..0..0....0..1..0..0....0..0..0..0....0..1..0..0
..1..1..1..1....0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0
		

A208138 Number of n X 4 0..1 arrays avoiding 0 0 1 and 0 1 1 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

9, 81, 324, 900, 2025, 3969, 7056, 11664, 18225, 27225, 39204, 54756, 74529, 99225, 129600, 166464, 210681, 263169, 324900, 396900, 480249, 576081, 685584, 810000, 950625, 1108809, 1285956, 1483524, 1703025, 1946025, 2214144, 2509056, 2832489
Offset: 1

Views

Author

R. H. Hardin, Feb 23 2012

Keywords

Comments

Column 4 of A208142.

Examples

			Some solutions for n=4:
..0..0..0..0....0..1..0..1....1..1..0..1....0..0..0..0....1..0..0..0
..0..1..0..0....0..0..0..0....1..0..1..0....1..0..0..0....0..1..0..0
..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0
..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0
		

Crossrefs

Cf. A208142.

Formula

Empirical: a(n) = (9/4)*n^4 + (9/2)*n^3 + (9/4)*n^2.
Conjectures from Colin Barker, Jun 28 2018: (Start)
G.f.: 9*x*(1 + 4*x + x^2) / (1 - x)^5.
a(n) = 9*(n^2*(1+n)^2) / 4.
(End)

A208139 Number of n X 5 0..1 arrays avoiding 0 0 1 and 0 1 1 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

12, 144, 720, 2400, 6300, 14112, 28224, 51840, 89100, 145200, 226512, 340704, 496860, 705600, 979200, 1331712, 1779084, 2339280, 3032400, 3880800, 4909212, 6144864, 7617600, 9360000, 11407500, 13798512, 16574544, 19780320, 23463900
Offset: 1

Views

Author

R. H. Hardin, Feb 23 2012

Keywords

Comments

Column 5 of A208142.

Examples

			Some solutions for n=4:
..0..0..0..0..0....0..0..0..0..0....1..1..1..0..0....1..0..1..0..1
..1..1..1..0..1....0..1..0..1..0....1..1..0..1..0....0..1..0..1..0
..1..0..1..0..0....0..1..0..0..0....0..1..0..1..0....0..1..0..1..0
..1..0..0..0..0....0..1..0..0..0....0..0..0..0..0....0..0..0..0..0
		

Crossrefs

Cf. A208142.

Formula

Empirical: a(n) = n^5 + 4*n^4 + 5*n^3 + 2*n^2.
Conjectures from Colin Barker, Jun 28 2018: (Start)
G.f.: 12*x*(1 + 6*x + 3*x^2) / (1 - x)^6.
a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6) for n>6.
(End)

A208140 Number of n X 6 0..1 arrays avoiding 0 0 1 and 0 1 1 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

16, 256, 1600, 6400, 19600, 50176, 112896, 230400, 435600, 774400, 1308736, 2119936, 3312400, 5017600, 7398400, 10653696, 15023376, 20793600, 28302400, 37945600, 50183056, 65545216, 84640000, 108160000, 136890000, 171714816
Offset: 1

Views

Author

R. H. Hardin, Feb 23 2012

Keywords

Comments

Column 6 of A208142.

Examples

			Some solutions for n=4:
..0..0..0..0..0..0....1..0..0..0..0..0....1..0..1..0..1..0....1..1..1..1..1..0
..1..0..1..0..1..0....0..0..0..0..0..0....0..1..0..0..0..0....0..0..0..0..0..0
..0..0..0..0..0..0....0..0..0..0..0..0....0..1..0..0..0..0....0..0..0..0..0..0
..0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0
		

Crossrefs

Cf. A208142.

Formula

Empirical: a(n) = (4/9)*n^6 + (8/3)*n^5 + (52/9)*n^4 + (16/3)*n^3 + (16/9)*n^2.
Conjectures from Colin Barker, Jun 28 2018: (Start)
G.f.: 16*x*(1 + x)*(1 + 8*x + x^2) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)

A208141 Number of n X 7 0..1 arrays avoiding 0 0 1 and 0 1 1 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

20, 400, 3000, 14000, 49000, 141120, 352800, 792000, 1633500, 3146000, 5725720, 9937200, 16562000, 26656000, 41616000, 63256320, 93896100, 136458000, 194579000, 272734000, 376372920, 512072000, 687700000, 912600000, 1197787500
Offset: 1

Views

Author

R. H. Hardin, Feb 23 2012

Keywords

Comments

Column 7 of A208142.

Examples

			Some solutions for n=4:
..0..1..0..1..0..0..0....1..1..0..1..0..1..0....0..0..0..0..0..0..0
..1..0..0..0..0..0..0....1..1..0..1..0..1..0....1..1..1..0..0..0..0
..0..0..0..0..0..0..0....0..1..0..0..0..0..0....0..0..0..0..0..0..0
..0..0..0..0..0..0..0....0..1..0..0..0..0..0....0..0..0..0..0..0..0
		

Crossrefs

Cf. A208142.

Formula

Empirical: a(n) = (5/36)*n^7 + (5/4)*n^6 + (155/36)*n^5 + (85/12)*n^4 + (50/9)*n^3 + (5/3)*n^2.
Conjectures from Colin Barker, Jun 28 2018: (Start)
G.f.: 20*x*(1 + 12*x + 18*x^2 + 4*x^3) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>8.
(End)

A208143 Number of 4Xn 0..1 arrays avoiding 0 0 1 and 0 1 1 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

8, 64, 240, 900, 2400, 6400, 14000, 30625, 58800, 112896, 197568, 345744, 564480, 921600, 1425600, 2205225, 3267000, 4840000, 6921200, 9897316, 13741728, 19079424, 25836720, 34987225, 46373600, 61465600, 79968000, 104040000
Offset: 1

Views

Author

R. H. Hardin Feb 23 2012

Keywords

Comments

Row 4 of A208142

Examples

			Some solutions for n=4
..0..0..0..0....0..0..0..0....1..1..0..1....1..0..0..0....1..1..1..1
..1..0..0..0....0..1..0..0....0..0..0..0....0..1..0..0....1..1..1..1
..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0....1..1..1..1
..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0....1..1..1..1
		

Formula

Empirical: a(n) = 2*a(n-1) +6*a(n-2) -14*a(n-3) -14*a(n-4) +42*a(n-5) +14*a(n-6) -70*a(n-7) +70*a(n-9) -14*a(n-10) -42*a(n-11) +14*a(n-12) +14*a(n-13) -6*a(n-14) -2*a(n-15) +a(n-16)

A208144 Number of 5Xn 0..1 arrays avoiding 0 0 1 and 0 1 1 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

10, 100, 450, 2025, 6300, 19600, 49000, 122500, 264600, 571536, 1111320, 2160900, 3880800, 6969600, 11761200, 19847025, 31853250, 51122500, 78728650, 121242121, 180360180, 268304400, 387550800, 559795600, 788351200, 1110222400, 1529388000
Offset: 1

Views

Author

R. H. Hardin Feb 23 2012

Keywords

Comments

Row 5 of A208142

Examples

			Some solutions for n=4
..0..0..0..0....0..0..0..0....0..0..0..0....1..0..1..0....0..1..0..0
..1..0..0..0....1..1..0..0....0..1..0..1....1..1..1..1....0..0..0..0
..0..0..0..0....0..0..0..0....0..0..0..0....0..1..0..1....0..0..0..0
..0..0..0..0....0..0..0..0....0..0..0..0....0..1..0..0....0..0..0..0
..0..0..0..0....0..0..0..0....0..0..0..0....0..1..0..0....0..0..0..0
		

Formula

Empirical: a(n) = 2*a(n-1) +8*a(n-2) -18*a(n-3) -27*a(n-4) +72*a(n-5) +48*a(n-6) -168*a(n-7) -42*a(n-8) +252*a(n-9) -252*a(n-11) +42*a(n-12) +168*a(n-13) -48*a(n-14) -72*a(n-15) +27*a(n-16) +18*a(n-17) -8*a(n-18) -2*a(n-19) +a(n-20)

A208145 Number of 6Xn 0..1 arrays avoiding 0 0 1 and 0 1 1 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

12, 144, 756, 3969, 14112, 50176, 141120, 396900, 952560, 2286144, 4889808, 10458756, 20490624, 40144896, 73389888, 134165889, 231891660, 400800400, 661320660, 1091179089, 1731457728, 2747437056, 4216552704, 6471237136
Offset: 1

Views

Author

R. H. Hardin Feb 23 2012

Keywords

Comments

Row 6 of A208142

Examples

			Some solutions for n=4
..0..1..0..0....1..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0
..0..1..0..1....0..0..0..0....1..1..0..0....0..1..0..0....0..1..0..0
..0..1..0..1....0..0..0..0....0..0..0..0....0..0..0..0....0..1..0..0
..0..1..0..0....0..0..0..0....0..0..0..0....0..0..0..0....0..1..0..0
..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0
..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0
		

Formula

Empirical: a(n) = 2*a(n-1) +10*a(n-2) -22*a(n-3) -44*a(n-4) +110*a(n-5) +110*a(n-6) -330*a(n-7) -165*a(n-8) +660*a(n-9) +132*a(n-10) -924*a(n-11) +924*a(n-13) -132*a(n-14) -660*a(n-15) +165*a(n-16) +330*a(n-17) -110*a(n-18) -110*a(n-19) +44*a(n-20) +22*a(n-21) -10*a(n-22) -2*a(n-23) +a(n-24).
Empirical: G.f. -x*(12 +120*x +x^23 -2*x^22 -10*x^21 +22*x^20 +44*x^19 -110*x^18 -110*x^17 +330*x^16 +165*x^15 -660*x^14 -132*x^13 +924*x^12 +25*x^11 -794*x^10 +818*x^9 +2110*x^8 +2960*x^7 +3070*x^6 +3910*x^5 +2310*x^4 +1281*x^3 +348*x^2) / ( (1+x)^11*(x-1)^13 ). - R. J. Mathar, Jul 03 2013

A208146 Number of 7Xn 0..1 arrays avoiding 0 0 1 and 0 1 1 horizontally and 0 0 1 and 1 0 1 vertically.

Original entry on oeis.org

14, 196, 1176, 7056, 28224, 112896, 352800, 1102500, 2910600, 7683984, 17929296, 41835024, 88792704, 188457984, 371026656, 730458729, 1352701350, 2505002500, 4408804400, 7759495744, 13082125056, 22055814144, 35840697984, 58241134224
Offset: 1

Views

Author

R. H. Hardin Feb 23 2012

Keywords

Comments

Row 7 of A208142

Examples

			Some solutions for n=4
..0..1..0..0....0..1..0..0....1..1..0..0....0..0..0..0....1..0..0..0
..0..1..0..1....1..0..1..0....1..0..1..0....1..0..1..0....0..1..0..0
..0..1..0..1....1..0..0..0....1..0..0..0....0..0..0..0....0..1..0..0
..0..1..0..0....1..0..0..0....1..0..0..0....0..0..0..0....0..0..0..0
..0..0..0..0....0..0..0..0....1..0..0..0....0..0..0..0....0..0..0..0
..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0
..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0
		

Formula

Empirical: a(n) = 2*a(n-1) +12*a(n-2) -26*a(n-3) -65*a(n-4) +156*a(n-5) +208*a(n-6) -572*a(n-7) -429*a(n-8) +1430*a(n-9) +572*a(n-10) -2574*a(n-11) -429*a(n-12) +3432*a(n-13) -3432*a(n-15) +429*a(n-16) +2574*a(n-17) -572*a(n-18) -1430*a(n-19) +429*a(n-20) +572*a(n-21) -208*a(n-22) -156*a(n-23) +65*a(n-24) +26*a(n-25) -12*a(n-26) -2*a(n-27) +a(n-28)
Showing 1-9 of 9 results.