This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A208180 #11 Aug 03 2025 21:05:25 %S A208180 663,669,741,933,1326,1338,1421,1482,1866,2163,2181,2199,2229,2247, %T A208180 2289,2387,2469,2499,2577,2589,2613,2631,2643,2649,2652,2661,2676, %U A208180 2679,2757,2769,2842,2949,2964,2973,3115,3129,3237,3241,3297,3395 %N A208180 Numbers that match polynomials over {0,1} that have a factor containing -2 as a coefficient; see Comments. %C A208180 The polynomials having coefficients in {0,1} are enumerated at A206073. They include the following: %C A208180 p(1,x) = 1 %C A208180 p(2,x) = x %C A208180 p(3,x) = x + 1 %C A208180 p(4,x) = x^2 %C A208180 p(663,x) = 1 + x + x^2 + x^4 + x^7 + x^9 = (x + 1)*f(x), where f(x) = 1 + x^2 - x^3 + 2 x^4 - 2 x^5 + 2 x^6 - x^7 + x^8. This show that a factor of p(663,x) has a factor that has -2 as a coefficient. Actually, 663 is the least n for which p(n,x) has a coefficient not in {-1,0,1,2}. %C A208180 The enumeration scheme for all nonzero polynomials with coefficients in {0,1} is introduced in Comments at A206073. The sequence A206073 itself enumerates only those polynomials that are irreducible over the ring of polynomials having integer coefficients; therefore, A206073 and A208180 are disjoint. %t A208180 t = Table[IntegerDigits[n, 2], {n, 1, 4000}]; %t A208180 b[n_] := Reverse[Table[x^k, {k, 0, n}]] %t A208180 p[n_, x_] := p[n, x] = t[[n]].b[-1 + Length[t[[n]]]] %t A208180 TableForm[Table[{n, p[n, x], Factor[p[n, x]]}, {n, 1, 4000}]]; %t A208180 DeleteCases[ %t A208180 Map[{#[[1]], Cases[#[[2]], {___, -2, ___}]} &, %t A208180 Map[{#[[1]], CoefficientList[#[[2]], x]} &, %t A208180 Map[{#[[1]], Map[#[[1]] &, #[[2]]]} &, %t A208180 Map[{#[[1]], Rest[FactorList[#[[2]]]]} &, %t A208180 Table[{n, Factor[p[n, x]]}, {n, 1, 3600}]]]]], {_, {}}] %t A208180 Map[#[[1]] &, %] (* A208180 *) %t A208180 (* _Peter J. C. Moses_, Feb 22 2012 *) %Y A208180 Cf. A208179, A206073, A206284, A208181, A208182. %K A208180 nonn %O A208180 1,1 %A A208180 _Clark Kimberling_, Feb 24 2012