This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A208184 #15 Aug 23 2015 04:17:20 %S A208184 1,1,4,188,30804,11211216,7623616080,8690922240480,15391623287043360, %T A208184 40018220546304026880,146226577876194816241920, %U A208184 725283826265926287362419200,4746982642910487550771226611200,40045545575592872978305843519334400 %N A208184 Number of distinct n-colored necklaces with 3 beads per color. %H A208184 Alois P. Heinz, <a href="/A208184/b208184.txt">Table of n, a(n) for n = 0..80</a> %F A208184 a(n) = Sum_{d|3} phi(3/d)*(n*d)!/(d!^n*n*3) if n>0 and a(0) = 1. %F A208184 For n > 0, a(n) = (3*n)!/(3*n*6^n) + 2*(n-1)!/3. - _Vaclav Kotesovec_, Aug 23 2015 %e A208184 a(0) = 1: the empty necklace. %e A208184 a(1) = 1: {000}. %e A208184 a(2) = 4: {000111, 001011, 010011, 010101}. %p A208184 with(numtheory); %p A208184 a:= n-> `if`(n=0, 1, add(phi(3/d) *(n*d)!/(d!^n *3*n), d={1, 3})): %p A208184 seq(a(n), n=0..20); %t A208184 Flatten[{1, Table[(3*n)!/(3*n*6^n) + 2*(n-1)!/3, {n, 1, 20}]}] (* _Vaclav Kotesovec_, Aug 23 2015 *) %Y A208184 Row n=3 of A208183. %Y A208184 Cf. A000010, A000142. %K A208184 nonn %O A208184 0,3 %A A208184 _Alois P. Heinz_, Feb 24 2012