cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A208194 Number of n X n 0..3 arrays with new values 0..3 introduced in row major order and no element equal to more than two of its immediate leftward or upward or left-upward diagonal neighbors.

Original entry on oeis.org

1, 14, 10366, 156617480, 37069738362057, 136398703432330477549, 7801822458198433796561428608, 6937084083184530563330081968289999750, 95885498147917477608538934758547979039384601906
Offset: 1

Views

Author

R. H. Hardin Feb 24 2012

Keywords

Comments

Diagonal of A208201

Examples

			Some solutions for n=4
..0..1..0..0....0..0..0..0....0..0..0..1....0..0..1..0....0..0..1..2
..2..0..3..0....1..1..1..1....1..2..1..1....0..2..2..0....0..3..3..0
..2..0..3..1....2..1..2..3....0..2..0..3....2..3..3..0....1..0..1..2
..1..2..0..2....0..1..2..0....0..0..2..1....1..2..3..2....1..1..0..0
		

A208195 Number of n X 2 0..3 arrays with new values 0..3 introduced in row major order and no element equal to more than two of its immediate leftward or upward or left-upward diagonal neighbors.

Original entry on oeis.org

2, 14, 178, 2653, 41272, 648569, 10215440, 160984657, 2537249104, 39990174809, 630298266416, 9934351303777, 156578831693200, 2467894630281641, 38897365218137072, 613075213064694577, 9662896575843028048
Offset: 1

Views

Author

R. H. Hardin, Feb 24 2012

Keywords

Comments

Column 2 of A208201.

Examples

			Some solutions for n=4:
..0..0....0..0....0..0....0..0....0..0....0..0....0..1....0..0....0..0....0..1
..0..1....1..0....1..1....1..0....1..0....0..1....1..1....0..1....0..1....1..0
..0..0....2..0....0..1....1..0....0..0....0..0....0..0....0..2....1..0....0..0
..1..2....1..2....0..0....0..1....0..1....0..2....0..1....1..3....2..2....2..0
		

Crossrefs

Cf. A208201.

Formula

Empirical: a(n) = 18*a(n-1) - 31*a(n-2) - 66*a(n-3) - 24*a(n-4) for n>5.
Empirical g.f.: x*(2 - 22*x - 12*x^2 + 15*x^3 + 8*x^4) / ((1 - 3*x - 2*x^2)*(1 - 15*x - 12*x^2)). - Colin Barker, Jun 29 2018

A208196 Number of n X 3 0..3 arrays with new values 0..3 introduced in row major order and no element equal to more than two of its immediate leftward or upward or left-upward diagonal neighbors.

Original entry on oeis.org

5, 178, 10366, 639701, 39725054, 2468504665, 153402542384, 9533100532733, 592428713557570, 36816123505610549, 2287915709208554132, 142181136908012254369, 8835760693778126853518, 549093000211986917072609
Offset: 1

Views

Author

R. H. Hardin, Feb 24 2012

Keywords

Comments

Column 3 of A208201.

Examples

			Some solutions for n=4:
..0..0..1....0..0..1....0..1..1....0..0..0....0..0..0....0..0..0....0..0..0
..0..2..0....0..1..0....1..0..2....0..1..0....0..1..2....0..1..0....0..1..2
..1..2..1....0..0..1....3..0..1....1..2..1....2..1..1....2..1..1....1..1..3
..3..0..0....1..1..0....1..1..1....0..1..3....0..1..2....0..2..1....1..0..0
		

Crossrefs

Cf. A208201.

Formula

Empirical: a(n) = 66*a(n-1) - 222*a(n-2) - 1100*a(n-3) + 363*a(n-4) + 594*a(n-5) - 216*a(n-6) for n>7.
Empirical g.f.: x*(5 - 152*x - 272*x^2 + 561*x^3 + 25*x^4 - 261*x^5 + 72*x^6) / ((1 - 6*x - 3*x^2 + 2*x^3)*(1 - 60*x - 135*x^2 + 108*x^3)). - Colin Barker, Jun 29 2018

A208197 Number of nX4 0..3 arrays with new values 0..3 introduced in row major order and no element equal to more than two of its immediate leftward or upward or left-upward diagonal neighbors.

Original entry on oeis.org

15, 2653, 639701, 156617480, 38372808893, 9402035642924, 2303673397508915, 564442821781056268, 138298988287411669755, 33885824084409470445384, 8302657077306720410135797, 2034305388933816797435987804
Offset: 1

Views

Author

R. H. Hardin Feb 24 2012

Keywords

Comments

Column 4 of A208201

Examples

			Some solutions for n=4
..0..0..0..1....0..0..0..1....0..1..1..0....0..0..0..1....0..0..0..0
..0..1..1..0....1..1..0..0....0..0..2..0....0..1..0..2....0..1..1..2
..0..1..2..3....2..3..3..0....0..2..1..1....2..1..0..3....1..0..1..3
..3..0..3..1....0..2..1..3....3..1..0..0....1..0..1..0....1..3..3..1
		

Formula

Empirical: a(n) = 236*a(n-1) +2368*a(n-2) -37526*a(n-3) -310734*a(n-4) +811712*a(n-5) +1791667*a(n-6) -2516274*a(n-7) -1895184*a(n-8) +2138400*a(n-9) -373248*a(n-10) for n>11

A208198 Number of nX5 0..3 arrays with new values 0..3 introduced in row major order and no element equal to more than two of its immediate leftward or upward or left-upward diagonal neighbors.

Original entry on oeis.org

51, 41272, 39725054, 38372808893, 37069738362057, 35810971705853725, 34594950233928279876, 33420220819293699707599, 32285381308444124871905667, 31189077171790298063795540459, 30129999876244591484571731949842
Offset: 1

Views

Author

R. H. Hardin Feb 24 2012

Keywords

Comments

Column 5 of A208201

Examples

			Some solutions for n=4
..0..0..0..1..0....0..0..0..0..0....0..1..0..0..0....0..1..1..0..0
..0..1..1..0..2....0..1..0..2..0....1..0..0..1..0....0..2..0..0..2
..2..1..2..2..2....1..0..2..0..1....1..0..2..3..1....1..1..3..1..0
..0..1..3..1..3....2..1..3..0..0....3..2..2..1..1....0..1..0..2..3
		

Formula

Empirical: a(n) = 928*a(n-1) +38247*a(n-2) -1419908*a(n-3) -25003347*a(n-4) +1012531896*a(n-5) -9450054156*a(n-6) +24082844974*a(n-7) +80821917709*a(n-8) -489140400628*a(n-9) +403243304428*a(n-10) +1648713698424*a(n-11) -3331507779798*a(n-12) +632406681414*a(n-13) +2327643475767*a(n-14) -977046212844*a(n-15) -462110735853*a(n-16) +172474098336*a(n-17) +29511981612*a(n-18) -7270112880*a(n-19) for n>20

A208199 Number of nX6 0..3 arrays with new values 0..3 introduced in row major order and no element equal to more than two of its immediate leftward or upward or left-upward diagonal neighbors.

Original entry on oeis.org

187, 648569, 2468504665, 9402035642924, 35810971705853725, 136398703432330477549, 519522527116810577984260, 1978784616446414312287693835, 7536898505819261464135073030914
Offset: 1

Views

Author

R. H. Hardin Feb 24 2012

Keywords

Comments

Column 6 of A208201

Examples

			Some solutions for n=4
..0..1..1..1..0..0....0..0..0..0..0..1....0..0..0..0..0..0....0..1..1..0..0..0
..0..1..0..1..0..1....0..1..2..1..3..2....0..1..1..0..2..1....0..1..2..3..2..1
..0..1..1..1..0..2....1..3..0..3..1..0....0..1..0..2..2..1....1..1..0..3..2..3
..3..0..1..2..1..1....2..1..0..3..3..3....0..3..1..0..1..0....3..0..0..2..1..3
		

A208200 Number of nX7 0..3 arrays with new values 0..3 introduced in row major order and no element equal to more than two of its immediate leftward or upward or left-upward diagonal neighbors.

Original entry on oeis.org

715, 10215440, 153402542384, 2303673397508915, 34594950233928279876, 519522527116810577984260, 7801822458198433796561428608, 117162260457319989881048135168019, 1759460094015764611132758812387283596
Offset: 1

Views

Author

R. H. Hardin Feb 24 2012

Keywords

Comments

Column 7 of A208201

Examples

			Some solutions for n=4
..0..0..0..1..0..1..0....0..1..2..3..0..1..2....0..0..0..0..0..0..0
..2..2..1..0..3..1..0....0..0..1..3..0..2..0....0..1..0..1..2..3..2
..1..0..0..0..1..2..0....3..0..2..0..3..1..1....2..0..2..1..0..1..2
..3..3..0..1..0..1..2....2..0..2..0..1..0..3....1..3..2..1..3..0..3
		
Showing 1-7 of 7 results.