cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208219 a(n)=(a(n-1)^3*a(n-3)+a(n-2))/a(n-4) with a(0)=a(1)=a(2)=a(3)=1.

This page as a plain text file.
%I A208219 #13 Mar 19 2017 10:38:56
%S A208219 1,1,1,1,2,9,731,781235791,2145650135491172007486084385,
%T A208219 802327342392981520933850619811649523436811893002103478524225246677189521545661182074
%N A208219 a(n)=(a(n-1)^3*a(n-3)+a(n-2))/a(n-4) with a(0)=a(1)=a(2)=a(3)=1.
%C A208219 This is the case a=1, b=1, c=3, y(0)=y(1)=y(2)=y(3)=1 of the recurrence shown in the Example 3.3 of "The Laurent phenomenon" (see Link lines, p. 10).
%C A208219 The next term (a(10)) has 258 digits. - _Harvey P. Dale_, Sep 21 2016
%H A208219 Seiichi Manyama, <a href="/A208219/b208219.txt">Table of n, a(n) for n = 0..11</a>
%H A208219 Sergey Fomin and Andrei Zelevinsky, <a href="http://arxiv.org/abs/math/0104241">The Laurent phenomenon</a>, arXiv:math/0104241v1 [math.CO] (2001), Advances in Applied Mathematics 28 (2002), 119-144.
%p A208219 y:=proc(n) if n<4 then return 1: fi: return (y(n-1)^3*y(n-3)+y(n-2))/y(n-4): end:
%p A208219 seq(y(n),n=0..9);
%t A208219 RecurrenceTable[{a[0]==a[1]==a[2]==a[3]==1,a[n]==(a[n-1]^3 a[n-3]+ a[n-2])/ a[n-4]},a,{n,10}] (* _Harvey P. Dale_, Sep 21 2016 *)
%Y A208219 Cf. A048736, A208218, A208222.
%K A208219 nonn
%O A208219 0,5
%A A208219 _Matthew C. Russell_, Apr 25 2012