cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208227 a(n) = (a(n-1)^2*a(n-3)^4+a(n-2))/a(n-4) with a(0)=a(1)=a(2)=a(3)=1.

This page as a plain text file.
%I A208227 #14 Mar 19 2017 12:20:21
%S A208227 1,1,1,1,2,5,27,11669,42551737826,192450770996317798484507077,
%T A208227 25433732883480327279167427243395261255488704554514737402263583619505
%N A208227 a(n) = (a(n-1)^2*a(n-3)^4+a(n-2))/a(n-4) with a(0)=a(1)=a(2)=a(3)=1.
%C A208227 This is the case a=4, b=1, c=2, y(0)=y(1)=y(2)=y(3)=1 of the recurrence shown in the Example 3.3 of "The Laurent phenomenon" (see Link lines, p. 10).
%H A208227 Seiichi Manyama, <a href="/A208227/b208227.txt">Table of n, a(n) for n = 0..12</a>
%H A208227 Sergey Fomin and Andrei Zelevinsky, <a href="http://arxiv.org/abs/math/0104241">The Laurent phenomenon</a>, arXiv:math/0104241v1 [math.CO] (2001), Advances in Applied Mathematics 28 (2002), 119-144.
%p A208227 y:=proc(n) if n<4 then return 1: fi: return (y(n-1)^2*y(n-3)^4+y(n-2))/y(n-4): end:
%p A208227 seq(y(n),n=0..10);
%t A208227 a[n_]:=If[n<4,1, (a[n - 1]^2*a[n- 3]^4 + a[n - 2])/a[n - 4]]; Table[a[n], {n, 0, 10}] (* _Indranil Ghosh_, Mar 19 2017 *)
%Y A208227 Cf. A048736, A208224, A208226, A208228.
%K A208227 nonn
%O A208227 0,5
%A A208227 _Matthew C. Russell_, Apr 25 2012