cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208233 First inverse function (numbers of rows) for pairing function A188568.

This page as a plain text file.
%I A208233 #13 Feb 17 2022 14:17:59
%S A208233 1,1,2,3,2,1,1,3,2,4,5,2,3,4,1,1,5,3,4,2,6,7,2,5,4,3,6,1,1,7,3,5,4,6,
%T A208233 2,8,9,2,7,4,5,6,3,8,1,1,9,3,7,5,6,4,8,2,10,11,2,9,4,7,6,5,8,3,10,1
%N A208233 First inverse function (numbers of rows) for pairing function A188568.
%H A208233 Boris Putievskiy, <a href="/A208233/b208233.txt">Rows n = 1..140 of triangle, flattened</a>
%H A208233 Boris Putievskiy, <a href="http://arxiv.org/abs/1212.2732">Transformations Integer Sequences And Pairing Functions</a>, arXiv:1212.2732 [math.CO], 2012.
%F A208233 a(n) =  max(i,j)*((-1)^i+1)/2-min(i,j)*((-1)^i-1)/2, if i>=j
%F A208233 a(n) = -max(i,j)*((-1)^j-1)/2+min(i,j)*((-1)^j+1)/2, if i<j,
%F A208233 where
%F A208233 t = floor((-1+sqrt(8*n-7))/2),
%F A208233 i = n-t*(t+1)/2,
%F A208233 j = (t*t+3*t+4)/2-n.
%e A208233 The start of the sequence as triangle array read by rows:
%e A208233   1;
%e A208233   1,2;
%e A208233   3,2,1;
%e A208233   1,3,2,4;
%e A208233   5,2,3,41;
%e A208233   1,5,3,4,2,6;
%e A208233   7,2,5,4,3,6,1;
%e A208233   ...
%e A208233 Row number k contains permutation numbers form 1 to k.
%o A208233 (Python)
%o A208233 t=int((math.sqrt(8*n-7) - 1)/ 2)
%o A208233 i=n-t*(t+1)/2
%o A208233 j=(t*t+3*t+4)/2-n
%o A208233 if i>=j:
%o A208233    result= max(i,j)*((-1)**i+1)/2-min(i,j)*((-1)**i-1)/2
%o A208233 else:
%o A208233    result=-max(i,j)*((-1)**j-1)/2+min(i,j)*((-1)**j+1)/2
%Y A208233 Cf. A188568.
%K A208233 nonn,tabl
%O A208233 1,3
%A A208233 _Boris Putievskiy_, Jan 10 2013