cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208234 Second inverse function (numbers of columns) for pairing function A188568.

Original entry on oeis.org

1, 2, 1, 1, 2, 3, 4, 2, 3, 1, 1, 4, 3, 2, 5, 6, 2, 4, 3, 5, 1, 1, 6, 3, 4, 5, 2, 7, 8, 2, 6, 4, 5, 3, 7, 1, 1, 8, 3, 6, 5, 4, 7, 2, 9, 10, 2, 8, 4, 6, 5, 7, 3, 9, 1, 1, 10, 3, 8, 5, 6, 7, 4, 9, 2, 11
Offset: 1

Views

Author

Boris Putievskiy, Jan 10 2013

Keywords

Examples

			The start of the sequence as triangle array read by rows:
  1;
  2,1;
  1,2,3;
  4,2,3,1;
  1,4,3,2,5;
  6,2,4,3,5,1;
  1,6,3,4,5,2,7;
  ...
Row number k contains permutation numbers form 1 to k.
		

Crossrefs

Cf. A188568.

Programs

  • Python
    t=int((math.sqrt(8*n-7) - 1)/ 2)
    i=n-t*(t+1)//2
    j=(t*t+3*t+4)//2-n
    if i>=j:
        result=-max(i,j)*((-1)**i-1)/2+min(i,j)*((-1)**i+1)/2
    else:
        result= max(i,j)*((-1)**j+1)/2-min(i,j)*((-1)**j-1)/2

Formula

a(n) = -max(i,j)*((-1)^i-1)/2+min(i,j)*((-1)^i+1)/2, if i>=j
a(n) = max(i,j)*((-1)^j+1)/2-min(i,j)*((-1)^j-1)/2, if i
where t = floor((-1+sqrt(8*n-7))/2), i = n-t*(t+1)/2, j = (t*t+3*t+4)/2-n.