cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208243 Number of ways to write 2n-1 = p+q, where p is a prime, and both q and q+2 are practical numbers (A005153).

Original entry on oeis.org

0, 0, 1, 2, 3, 2, 2, 2, 2, 3, 4, 4, 3, 2, 3, 3, 5, 6, 3, 3, 4, 4, 5, 7, 4, 3, 4, 2, 5, 7, 4, 4, 5, 4, 5, 7, 4, 5, 8, 2, 5, 7, 5, 5, 6, 6, 4, 7, 4, 5, 9, 3, 5, 9, 4, 6, 6, 5, 5, 7, 3, 3, 7, 3, 6, 8, 5, 4, 8, 4, 5, 8, 4, 4, 5, 3, 5, 8, 6, 3, 6, 4, 5, 12, 5, 5, 5, 3, 6, 8, 5, 4, 8, 4, 4, 8, 4, 6, 9, 5
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 11 2013

Keywords

Comments

Conjecture: a(n)>0 for all n=3,4,...
The author has verified this for n up to 2*10^8. It is known that there are infinitely many practical numbers q with q+2 also practical.
Zhi-Wei Sun also made the following similar conjectures:
(1) Each odd number n>5 can be written as p+q with p and p+6 both prime and q practical. Also, any odd number n>3 not equal to 55 can be written as p+q with p and p+2 both prime and q practical.
(2) Each integer n>10 can be written as x+y (x,y>0) with 6x-1 and 6x+1 both prime, and y and y+6 both practical.
Also, any integer n>=6360 can be written as x+y (x,y>0) with 6x-1 and 6x+1 both prime, and y and y+2 both practical.

Examples

			a(14)=2 since 2*14-1=27=11+16=23+4, where 11 and 23 are primes, 16,16+2,4,4+2 are practical numbers.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=f[n]=FactorInteger[n]
    Pow[n_,i_]:=Pow[n,i]=Part[Part[f[n],i],1]^(Part[Part[f[n],i],2])
    Con[n_]:=Con[n]=Sum[If[Part[Part[f[n],s+1],1]<=DivisorSigma[1,Product[Pow[n,i],{i,1,s}]]+1,0,1],{s,1,Length[f[n]]-1}]
    pr[n_]:=pr[n]=n>0&&(n<3||Mod[n,2]+Con[n]==0)
    a[n_]:=a[n]=Sum[If[pr[2k]==True&&pr[2k+2]==True&&PrimeQ[2n-1-2k]==True,1,0],{k,1,n-1}]
    Do[Print[n," ",a[n]],{n,1,100}]