A208243 Number of ways to write 2n-1 = p+q, where p is a prime, and both q and q+2 are practical numbers (A005153).
0, 0, 1, 2, 3, 2, 2, 2, 2, 3, 4, 4, 3, 2, 3, 3, 5, 6, 3, 3, 4, 4, 5, 7, 4, 3, 4, 2, 5, 7, 4, 4, 5, 4, 5, 7, 4, 5, 8, 2, 5, 7, 5, 5, 6, 6, 4, 7, 4, 5, 9, 3, 5, 9, 4, 6, 6, 5, 5, 7, 3, 3, 7, 3, 6, 8, 5, 4, 8, 4, 5, 8, 4, 4, 5, 3, 5, 8, 6, 3, 6, 4, 5, 12, 5, 5, 5, 3, 6, 8, 5, 4, 8, 4, 4, 8, 4, 6, 9, 5
Offset: 1
Keywords
Examples
a(14)=2 since 2*14-1=27=11+16=23+4, where 11 and 23 are primes, 16,16+2,4,4+2 are practical numbers.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- G. Melfi, On two conjectures about practical numbers, J. Number Theory 56 (1996) 205-210 [MR96i:11106].
- Zhi-Wei Sun, Conjectures involving primes and quadratic forms, arxiv:1211.1588 [math.NT], 2012-2017.
Programs
-
Mathematica
f[n_]:=f[n]=FactorInteger[n] Pow[n_,i_]:=Pow[n,i]=Part[Part[f[n],i],1]^(Part[Part[f[n],i],2]) Con[n_]:=Con[n]=Sum[If[Part[Part[f[n],s+1],1]<=DivisorSigma[1,Product[Pow[n,i],{i,1,s}]]+1,0,1],{s,1,Length[f[n]]-1}] pr[n_]:=pr[n]=n>0&&(n<3||Mod[n,2]+Con[n]==0) a[n_]:=a[n]=Sum[If[pr[2k]==True&&pr[2k+2]==True&&PrimeQ[2n-1-2k]==True,1,0],{k,1,n-1}] Do[Print[n," ",a[n]],{n,1,100}]
Comments