This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A208245 #20 Jul 28 2013 12:20:07 %S A208245 1,1,1,1,1,1,1,2,1,1,1,2,2,1,1,1,3,3,2,1,1,1,3,4,3,2,1,1,1,4,6,5,3,2, %T A208245 1,1,1,4,7,7,5,3,2,1,1,1,5,10,11,8,5,3,2,1,1,1,5,11,14,12,8,5,3,2,1,1, %U A208245 1,6,15,21,19,13,8,5,3,2,1,1,1,6,16,25,26,20,13,8,5,3,2,1,1 %N A208245 Triangle read by rows: a(n,k) = a(n-2,k) + a(n-2,k-1). %C A208245 Sum of terms in each row are given by sequence A052955. %C A208245 Columns (at constant k) converge toward Fibonacci starting first from high value of k). %C A208245 First seven rows are same as A008242. The odd numbered rows of this sequence equal the rows of A123736. Also it has some similarities to A162741. %C A208245 Columns (constant k), prior to convergence to Fibonacci, appear as various other sequences (e.g. k = 4, is sequence A055803, with other columns in same referenced family). %H A208245 Reinhard Zumkeller, <a href="/A208245/b208245.txt">Rows n = 1..100 of triangle, flattened</a> %F A208245 a(n,k) = a(n-2,k) + a(n-2,k-1); if n=k or k=1 then a(n,k)=1; if n<k or n=0 then a(n,k)=0 %e A208245 The first 13 rows are (as above) where n is the row index: %e A208245 1 %e A208245 1, 1 %e A208245 1, 1, 1 %e A208245 1, 2, 1, 1 %e A208245 1, 2, 2, 1, 1 %e A208245 1, 3, 3, 2, 1, 1 %e A208245 1, 3, 4, 3, 2, 1, 1 %e A208245 1, 4, 6, 5, 3, 2, 1, 1 %e A208245 1, 4, 7, 7, 5, 3, 2, 1, 1 %e A208245 1, 5, 10, 11, 8, 5, 3, 2, 1, 1 %e A208245 1, 5, 11, 14, 12, 8, 5, 3, 2, 1, 1 %e A208245 1, 6, 15, 21, 19, 13, 8, 5, 3, 2, 1, 1 %e A208245 1, 6, 16, 25, 26, 20, 13, 8, 5, 3, 2, 1, 1, %o A208245 (Haskell) %o A208245 a208245 n k = a208245_tabl !! (n-1) !! (k-1) %o A208245 a208245_row n = a208245_tabl !! (n-1) %o A208245 a208245_tabl = map fst $ iterate f ([1], [1, 1]) where %o A208245 f (us, vs) = (vs, zipWith (+) ([0] ++ us ++ [0]) (us ++ [0, 1])) %o A208245 -- _Reinhard Zumkeller_, Jul 28 2013 %Y A208245 Cf. A000045 (central terms). %K A208245 nonn,easy,tabl %O A208245 1,8 %A A208245 _Richard R. Forberg_, Apr 22 2013