A208253 Number of n X 3 0..2 arrays with new values 0..2 introduced in row major order and no element equal to more than one of its immediate leftward or upward neighbors.
5, 96, 2040, 43344, 920928, 19566912, 415737216, 8833148160, 187677464064, 3987573838848, 84723785029632, 1800122089230336, 38247105402593280, 812634365429366784, 17266002353004576768, 366849901919230820352
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..0..1....0..0..0....0..1..0....0..0..1....0..0..0....0..1..2....0..0..1 ..2..0..0....0..1..2....0..1..1....2..0..2....1..2..1....1..2..0....1..1..2 ..2..0..1....2..0..0....1..0..2....0..2..0....0..2..2....0..1..0....1..0..1 ..2..2..2....1..0..1....1..2..0....2..0..2....0..0..2....2..0..1....2..1..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A208258.
Formula
Empirical: a(n) = 22*a(n-1) - 16*a(n-2) for n>3.
Conjectures from Colin Barker, Jun 29 2018: (Start)
G.f.: x*(1 - 2*x)*(5 - 4*x) / (1 - 22*x + 16*x^2).
a(n) = (1/32)*sqrt(3/35)*((11-sqrt(105))^n*(-13+sqrt(105)) + (11+sqrt(105))^n*(13+sqrt(105))) for n>1.
(End)
Comments