cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A208263 Number of n X n 0..1 arrays with new values 0..1 introduced in row major order and no element equal to more than two of its immediate leftward or upward or left-upward diagonal neighbors.

Original entry on oeis.org

1, 7, 161, 11929, 2867739, 2234126207, 5641457245533, 46171961042899417, 1224814800337927770335, 105309458529148583423889079, 29347371781481633173790977728301, 26507936613513086328494176843991041391
Offset: 1

Views

Author

R. H. Hardin Feb 24 2012

Keywords

Comments

Diagonal of A208269

Examples

			Some solutions for n=4
..0..0..1..0....0..1..0..1....0..0..0..1....0..0..0..1....0..0..1..0
..0..1..1..0....0..0..1..0....0..1..1..0....1..0..1..1....1..0..0..0
..1..1..0..0....1..1..1..0....1..1..0..1....0..0..1..0....0..1..1..0
..1..0..0..1....0..1..0..0....0..0..1..0....0..1..0..0....1..0..1..0
		

A208264 Number of n X 3 0..1 arrays with new values 0..1 introduced in row major order and no element equal to more than two of its immediate leftward or upward or left-upward diagonal neighbors.

Original entry on oeis.org

4, 25, 161, 1033, 6631, 42563, 273205, 1753657, 11256431, 72253147, 463780861, 2976931745, 19108426759, 122653794067, 787294181189, 5053509615817, 32437632650335, 208211736387083, 1336476297041869, 8578617726111793
Offset: 1

Views

Author

R. H. Hardin, Feb 24 2012

Keywords

Comments

Column 3 of A208269.

Examples

			Some solutions for n=4:
..0..1..0....0..0..1....0..1..1....0..1..1....0..0..0....0..0..0....0..0..1
..0..0..0....0..1..0....1..1..0....0..1..0....1..0..1....0..1..1....0..1..1
..1..1..1....1..1..1....0..1..0....0..1..1....1..0..1....1..0..1....1..0..0
..1..0..0....0..0..0....0..1..0....0..1..0....1..0..1....0..1..0....1..0..1
		

Crossrefs

Cf. A208269.

Formula

Empirical: a(n) = 6*a(n-1) + 3*a(n-2) - 2*a(n-3).
Empirical g.f.: x*(4 + x - x^2) / (1 - 6*x - 3*x^2 + 2*x^3). - Colin Barker, Jun 29 2018

A208265 Number of n X 4 0..1 arrays with new values 0..1 introduced in row major order and no element equal to more than two of its immediate leftward or upward or left-upward diagonal neighbors.

Original entry on oeis.org

8, 89, 1033, 11929, 137845, 1592731, 18403423, 212644499, 2457026181, 28390000737, 328035635669, 3790326714043, 43795780208895, 506043544208099, 5847140236199813, 67561476345437377, 780647102957445445
Offset: 1

Views

Author

R. H. Hardin, Feb 24 2012

Keywords

Comments

Column 4 of A208269.

Examples

			Some solutions for n=4:
..0..1..1..1....0..0..0..1....0..1..0..1....0..0..0..1....0..0..1..0
..1..1..0..0....0..1..1..0....1..1..0..1....1..0..1..0....0..1..1..0
..0..0..1..1....1..1..0..1....0..1..1..0....1..1..1..1....1..1..0..0
..1..1..0..0....0..0..1..0....0..0..1..1....1..0..1..0....1..0..0..1
		

Crossrefs

Cf. A208269.

Formula

Empirical: a(n) = 10*a(n-1) + 20*a(n-2) - 21*a(n-3) - 30*a(n-4) + 8*a(n-5).
Empirical g.f.: x*(8 + 9*x - 17*x^2 - 13*x^3 + 4*x^4) / (1 - 10*x - 20*x^2 + 21*x^3 + 30*x^4 - 8*x^5). - Colin Barker, Jun 29 2018

A208266 Number of nX5 0..1 arrays with new values 0..1 introduced in row major order and no element equal to more than two of its immediate leftward or upward or left-upward diagonal neighbors.

Original entry on oeis.org

16, 317, 6631, 137845, 2867739, 59655167, 1240971177, 25815151595, 537016650729, 11171225344081, 232388094425359, 4834225856311743, 100563411775559793, 2091958482792842737, 43517718984137019457, 905272203611654999429
Offset: 1

Views

Author

R. H. Hardin Feb 24 2012

Keywords

Comments

Column 5 of A208269

Examples

			Some solutions for n=4
..0..0..1..0..0....0..1..1..0..0....0..0..0..0..0....0..1..1..1..1
..1..1..1..1..0....0..1..0..0..1....1..1..0..1..0....1..0..0..0..0
..1..0..1..0..0....1..0..0..1..1....1..0..1..1..1....1..1..1..1..0
..1..1..1..0..1....0..1..1..0..0....1..1..1..0..1....0..1..0..0..1
		

Formula

Empirical: a(n) = 21*a(n-1) +9*a(n-2) -278*a(n-3) +73*a(n-4) +790*a(n-5) -662*a(n-6) +29*a(n-7) +69*a(n-8) -10*a(n-9)

A208267 Number of nX6 0..1 arrays with new values 0..1 introduced in row major order and no element equal to more than two of its immediate leftward or upward or left-upward diagonal neighbors.

Original entry on oeis.org

32, 1129, 42563, 1592731, 59655167, 2234126207, 83670667271, 3133560234217, 117355367786585, 4395090865370635, 164601109918978615, 6164497208894901477, 230867373009598884627, 8646243499452479433569, 323811570588787197424201
Offset: 1

Views

Author

R. H. Hardin Feb 24 2012

Keywords

Comments

Column 6 of A208269

Examples

			Some solutions for n=4
..0..0..0..1..1..0....0..0..0..0..0..0....0..0..0..1..0..0....0..0..0..1..0..0
..0..1..1..1..0..1....1..0..1..0..1..0....0..1..1..1..0..1....0..1..1..0..0..1
..1..0..1..0..1..0....0..0..1..0..1..1....0..0..0..1..0..1....0..1..0..0..1..1
..1..1..0..0..0..0....0..1..0..0..1..0....1..1..1..0..1..0....0..1..1..0..1..0
		

Formula

Empirical: a(n) = 36*a(n-1) +120*a(n-2) -2391*a(n-3) -3905*a(n-4) +50702*a(n-5) +27152*a(n-6) -396016*a(n-7) +154999*a(n-8) +751787*a(n-9) -499260*a(n-10) -410368*a(n-11) +355981*a(n-12) +38077*a(n-13) -70276*a(n-14) +6203*a(n-15) +3386*a(n-16) -622*a(n-17) +28*a(n-18)

A208268 Number of nX7 0..1 arrays with new values 0..1 introduced in row major order and no element equal to more than two of its immediate leftward or upward or left-upward diagonal neighbors.

Original entry on oeis.org

64, 4021, 273205, 18403423, 1240971177, 83670667271, 5641457245533, 380372051615157, 25646375739266275, 1729192685453990877, 116589859961103508219, 7861006788319434001589, 530024032549172830292655
Offset: 1

Views

Author

R. H. Hardin Feb 24 2012

Keywords

Comments

Column 7 of A208269

Examples

			Some solutions for n=4
..0..0..0..1..0..1..0....0..0..1..0..1..1..1....0..1..0..0..1..0..1
..0..1..1..0..1..1..0....1..1..1..1..1..0..1....0..1..1..0..0..1..1
..1..0..0..0..1..0..0....1..0..1..0..1..1..1....1..0..1..0..1..1..0
..1..1..0..1..0..1..0....0..1..0..1..1..0..1....1..1..1..0..0..1..1
		

Formula

Empirical: a(n) = 77*a(n-1) -429*a(n-2) -16791*a(n-3) +132938*a(n-4) +1140609*a(n-5) -11250708*a(n-6) -21101443*a(n-7) +356560316*a(n-8) -276630106*a(n-9) -3595865197*a(n-10) +5253257444*a(n-11) +16399879057*a(n-12) -30419637636*a(n-13) -37486637674*a(n-14) +87632998667*a(n-15) +40083109062*a(n-16) -140235056122*a(n-17) -7589163210*a(n-18) +128111780723*a(n-19) -23221600421*a(n-20) -65939015129*a(n-21) +21868944788*a(n-22) +18307048178*a(n-23) -8259596531*a(n-24) -2431120428*a(n-25) +1497147381*a(n-26) +85285300*a(n-27) -123174410*a(n-28) +8581030*a(n-29) +3300116*a(n-30) -512304*a(n-31) +18304*a(n-32)
Showing 1-6 of 6 results.