A208287 T(n,k)=Number of nXk 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 1 and 1 1 0 vertically.
2, 4, 4, 6, 16, 6, 10, 36, 36, 8, 16, 100, 102, 64, 10, 26, 256, 378, 216, 100, 12, 42, 676, 1260, 984, 390, 144, 14, 68, 1764, 4374, 3984, 2090, 636, 196, 16, 110, 4624, 14946, 16872, 9900, 3900, 966, 256, 18, 178, 12100, 51384, 70216, 49130, 21096, 6650, 1392
Offset: 1
Examples
Some solutions for n=4 k=3 ..0..1..0....1..1..1....1..0..0....0..1..0....1..1..1....1..0..0....0..1..1 ..1..0..1....1..1..0....0..1..0....0..1..1....1..0..1....0..1..1....1..1..0 ..1..1..1....1..1..0....1..0..0....0..1..1....1..1..1....0..1..0....1..1..1 ..1..1..1....1..1..0....0..1..0....0..1..1....1..1..1....0..1..1....1..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..1106
Crossrefs
Formula
Empirical for column k:
k=1: a(n) = 2*n
k=2: a(n) = 4*n^2
k=3: a(n) = 2*n^3 + 6*n^2 - 2*n
k=4: a(n) = (4/3)*n^4 + 10*n^3 + (2/3)*n^2 - 2*n
k=5: a(n) = (5/6)*n^5 + 9*n^4 + (91/6)*n^3 - 9*n^2
k=6: a(n) = (8/15)*n^6 + (23/3)*n^5 + (82/3)*n^4 + (1/3)*n^3 - (178/15)*n^2 + 2*n
k=7: a(n) = (61/180)*n^7 + (121/20)*n^6 + (1157/36)*n^5 + (425/12)*n^4 - (2923/90)*n^3 - (22/15)*n^2 + 2*n
Comments