cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208289 Number of 5 X n 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 0 1 and 1 1 0 vertically.

Original entry on oeis.org

10, 100, 390, 2090, 9900, 49130, 239490, 1175440, 5754050, 28195750, 138110340, 676601470, 3314477450, 16237031560, 79541647910, 389658289890, 1908854053840, 9351079145150, 45808984336150, 224408665354600, 1099331244406030
Offset: 1

Views

Author

R. H. Hardin, Feb 25 2012

Keywords

Comments

Row 5 of A208287.

Examples

			Some solutions for n=4:
..0..1..0..0....1..0..1..0....0..1..0..1....0..1..0..0....1..1..1..1
..1..1..1..0....0..1..1..0....1..0..1..1....1..1..1..1....1..1..1..1
..1..1..0..0....1..1..1..0....1..0..1..1....0..1..1..1....1..1..1..1
..1..1..1..0....1..1..1..0....1..0..1..1....1..1..1..1....1..1..1..1
..1..1..1..0....1..1..1..0....1..0..1..1....1..1..1..1....1..1..1..1
		

Crossrefs

Cf. A208287.

Formula

Empirical: a(n) = 3*a(n-1) + 10*a(n-2) - 2*a(n-3) - 7*a(n-4) + a(n-6).
Empirical g.f.: 10*x*(1 + 7*x - x^2 - 6*x^3 + x^5) / (1 - 3*x - 10*x^2 + 2*x^3 + 7*x^4 - x^6). - Colin Barker, Jun 30 2018