cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A208301 T(n,k)=Number of n X k nonnegative integer arrays with new values 0 upwards introduced in row major order and no element equal to any horizontal or antidiagonal neighbor (colorings ignoring permutations of colors).

Original entry on oeis.org

1, 1, 2, 2, 5, 5, 5, 42, 52, 15, 15, 602, 2906, 877, 52, 52, 12840, 373780, 433252, 21147, 203, 203, 373780, 87852626, 656404264, 113503692, 678570, 877, 877, 14050312, 33093356640, 2227156082842, 2475181138384, 46538017584, 27644437, 4140
Offset: 1

Views

Author

R. H. Hardin, Feb 25 2012

Keywords

Examples

			Table starts
....1..........1.................2.....................5
....2..........5................42...................602
....5.........52..............2906................373780
...15........877............433252.............656404264
...52......21147.........113503692.........2475181138384
..203.....678570.......46538017584.....17131843186425504
..877...27644437....27700815674032.196551307092757144384
.4140.1382958545.22702140562948192
Some solutions for n=4 k=3
..0..1..0....0..1..0....0..1..0....0..1..0....0..1..0....0..1..2....0..1..0
..0..1..0....0..1..0....0..1..0....0..1..0....2..3..0....0..3..0....0..1..0
..0..1..0....0..2..1....0..1..0....0..1..0....0..2..0....0..1..0....2..1..0
..0..2..1....0..2..0....0..1..0....0..1..2....0..1..0....0..3..0....2..1..2
		

Crossrefs

Columns 1..6 are A000110, A099977(n-1), A208297, A208298, A208299, A208300
Main diagonal is A361450.
Cf. A207868.

A215904 T(n,k)=Number of diagonal and antidiagonal neighbor colorings of the even squares of an nXk array with new integer colors introduced in row major order.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 5, 5, 15, 5, 5, 5, 15, 42, 42, 15, 5, 15, 52, 726, 602, 726, 52, 15, 15, 203, 2906, 12840, 12840, 2906, 203, 15, 52, 877, 84550, 373780, 2387217, 373780, 84550, 877, 52, 52, 4140, 433252, 14050312, 87852626, 87852626, 14050312, 433252
Offset: 1

Views

Author

R. H. Hardin Aug 26 2012

Keywords

Comments

Table starts
...1......1...........2...............2..................5....................5
...1......1...........2...............5.................15...................52
...2......2..........15..............42................726.................2906
...2......5..........42.............602..............12840...............373780
...5.....15.........726...........12840............2387217.............87852626
...5.....52........2906..........373780...........87852626..........33093356640
..15....203.......84550........14050312........37060769357.......18383354944364
..15....877......433252.......656404264......2227156082842....14216420563705724
..52...4140....18378580.....37060650272...1701536105684377.14670987605491079080
..52..21147...113503692...2475181138384.148049849095504726
.203.115975..6485270720.192262536609952
.203.678570.46538017584

Examples

			Some solutions for n=3 k=4
..0..x..1..x....0..x..1..x....0..x..0..x....0..x..0..x....0..x..1..x
..x..2..x..2....x..2..x..2....x..1..x..2....x..1..x..2....x..2..x..2
..1..x..0..x....3..x..3..x....3..x..3..x....2..x..3..x....0..x..1..x
		

Crossrefs

Column 2 is A000110(n-1)
Column 4 is A208302
Odd squares: A215924

A215924 T(n,k)=Number of diagonal and antidiagonal neighbor colorings of the odd squares of an nXk array with new integer colors introduced in row major order.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 5, 4, 5, 2, 5, 15, 42, 42, 15, 5, 5, 52, 136, 602, 136, 52, 5, 15, 203, 2906, 12840, 12840, 2906, 203, 15, 15, 877, 12840, 373780, 322768, 373780, 12840, 877, 15, 52, 4140, 433252, 14050312, 87852626, 87852626, 14050312, 433252
Offset: 1

Views

Author

R. H. Hardin Aug 27 2012

Keywords

Comments

Table starts
..1.....1.........1.............2..................2.......................5
..1.....1.........2.............5.................15......................52
..1.....2.........4............42................136....................2906
..2.....5........42...........602..............12840..................373780
..2....15.......136.........12840.............322768................87852626
..5....52......2906........373780...........87852626.............33093356640
..5...203.....12840......14050312.........4044766240..........18383354944364
.15...877....433252.....656404264......2227156082842.......14216420563705724
.15..4140...2387180...37060650272....157752739276184....14670987605491079080
.52.21147.113503692.2475181138384.148049849095504726.19558496206477343793824

Examples

			Some solutions for n=3 k=4
..x..0..x..1....x..0..x..0....x..0..x..1....x..0..x..1....x..0..x..1
..1..x..2..x....1..x..2..x....2..x..3..x....2..x..3..x....2..x..2..x
..x..3..x..1....x..3..x..0....x..0..x..1....x..4..x..0....x..1..x..1
		

Crossrefs

Column 2 is A000110(n-1)
Column 4 is A208302
Column 6 is A215902
Even squares: A215904
Showing 1-3 of 3 results.