A208324 Triangle T(n,k), read by rows, given by (2, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (4, -2, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
1, 2, 4, 3, 10, 8, 4, 18, 28, 16, 5, 28, 64, 72, 32, 6, 40, 120, 200, 176, 64, 7, 54, 200, 440, 576, 416, 128, 8, 70, 308, 840, 1456, 1568, 960, 256, 9, 88, 448, 1456, 3136, 4480, 4096, 2176, 512, 10, 108, 624, 2352, 6048, 10752, 13056, 10368, 4864
Offset: 0
Examples
Triangle begins : 1 2, 4 3, 10, 8 4, 18, 28, 16 5, 28, 64, 72, 32 6, 40, 120, 200, 176, 64 7, 54, 200, 440, 576, 416, 128 8, 70, 308, 840, 1456, 1568, 960, 256 9, 88, 448, 1456, 3136, 4480, 4096, 2176, 512 10, 108, 624, 2352, 6048, 10752, 13056, 10368, 4864, 1024
Crossrefs
Cf. A207627
Formula
T(n,0) = n+1.
T(n,1) = 2*T(n,0) + T(n-1,1).
T(n,k) = 2*T(n-1,k-1) + T(n-1,k) for k>1.
T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k) - 2*T(n-2,k-1) with T(0,0) = 1, T(1,0) = 2, T(1,1) = 4.
G.f.: (1+2*y*x)/(1-2*(1+y)*x+(1+2*y)*x^2).
Comments