cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208327 Position of f(n) when the numbers f(j) and g(k) are jointly ranked, where f(j)=j + |cos j | and g(k)=k + |sin k|.

This page as a plain text file.
%I A208327 #10 Jun 29 2017 19:31:17
%S A208327 1,3,6,7,9,12,14,15,18,20,21,24,26,27,30,32,33,35,38,39,41,44,45,47,
%T A208327 50,51,53,56,58,59,62,64,65,68,70,71,74,76,77,79,82,83,85,88,89,91,94,
%U A208327 95,97,100,102,103,106,108,109,112,114,115,118,120,121,123,126
%N A208327 Position of f(n) when the numbers f(j) and g(k) are jointly ranked, where f(j)=j + |cos j | and g(k)=k + |sin k|.
%C A208327 For a guide to related sequences and a conjecture, see A206911.
%H A208327 G. C. Greubel, <a href="/A208327/b208327.txt">Table of n, a(n) for n = 1..1000</a>
%t A208327 f[n_] := N[n + Abs[Cos[n]]]; g[n_] := N[n + Abs[Sin[n]]]; z = 90;
%t A208327 c = Table[f[n], {n, 1, z}];
%t A208327 s = Table[g[n], {n, 1, z}];
%t A208327 j = Sort[Union[c, s]];
%t A208327 p[n_] := Position[j, f[n]];
%t A208327 q[n_] := Position[j, g[n]];
%t A208327 Flatten[Table[p[n], {n, 1, z}]]  (* A208327 *)
%t A208327 Flatten[Table[q[n], {n, 1, z}]]  (* A185392 *)
%Y A208327 Cf. A185392, A206911.
%K A208327 nonn
%O A208327 1,2
%A A208327 _Clark Kimberling_, Feb 26 2012