cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208329 Triangle of coefficients of polynomials v(n,x) jointly generated with A208328; see the Formula section.

Original entry on oeis.org

1, 0, 3, 0, 2, 5, 0, 2, 4, 11, 0, 2, 4, 14, 21, 0, 2, 4, 18, 32, 43, 0, 2, 4, 22, 44, 82, 85, 0, 2, 4, 26, 56, 130, 188, 171, 0, 2, 4, 30, 68, 186, 324, 438, 341, 0, 2, 4, 34, 80, 250, 492, 834, 984, 683, 0, 2, 4, 38, 92, 322, 692, 1374, 2028, 2202, 1365, 0, 2, 4, 42
Offset: 1

Views

Author

Clark Kimberling, Feb 26 2012

Keywords

Comments

Row sums, u(n,1): A000129
Row sums, v(n,1): A001333
As triangle T(n,k) with 0 <= k <= n, it is (0, 2/3, 1/3, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (3, -4/3, -2/3, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Feb 27 2012

Examples

			First five rows:
  1;
  0,  3;
  0,  2,  5;
  0,  2,  4, 11;
  0,  2,  4, 14, 21;
First five polynomials u(n,x):
  1
     3x
     2x + 5x^2
     2x + 4x^2 + 11x^3
     2x + 4x^2 + 14x^3 + 21x^4.
		

Crossrefs

Cf. A208328.

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 13;
    u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
    v[n_, x_] := 2 x*u[n - 1, x] + x*v[n - 1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]  (* A208328 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]  (* A208329 *)

Formula

u(n,x) = u(n-1,x) + x*v(n-1,x),
v(n,x) = 2x*u(n-1,x) + x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Feb 27 2012: (Start)
As triangle T(n,k), 0 <= k <= n:
T(n,k) = T(n-1,k) + T(n-1,k-1) - T(n-2,k-1) + 2*T(n-2,k-2) with T(0,0) = 1, T(1,0) = 0, T(1,1) = 3 and T(n,k) = 0 if k < 0 or if k > n.
G.f.: (1-(1-2*y)*x)/(1-(1+y)*x+y*(1-2*y)*x^2).
Sum_{k=0..n} T(n,k)*x^k = (-1)^n*A108411(n+1), A000007(n), A001333(n+1) for x = -1, 0, 1 respectively. (End)