cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208330 Triangle of coefficients of polynomials u(n,x) jointly generated with A208331; see the Formula section.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 9, 5, 1, 4, 18, 20, 11, 1, 5, 30, 50, 55, 21, 1, 6, 45, 100, 165, 126, 43, 1, 7, 63, 175, 385, 441, 301, 85, 1, 8, 84, 280, 770, 1176, 1204, 680, 171, 1, 9, 108, 420, 1386, 2646, 3612, 3060, 1539, 341, 1, 10, 135, 600, 2310, 5292, 9030
Offset: 1

Views

Author

Clark Kimberling, Feb 26 2012

Keywords

Comments

Subtriangle of the triangle given by (1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, 2, -2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 18 2012

Examples

			First five rows:
1
1...1
1...2...3
1...3...9....5
1...4...18...20...11
First five polynomials u(n,x):
1, 1 + x, 1 + 2x + 3x^2, 1 + 3x + 9x^2 + 5x^3, 1 + 4x + 18x^2 + 20x^3 + 11x^4.
(1, 0, 0, 1, 0, 0, ...) DELTA (0, 1, 2, -2, 0, 0, ...) begins :
1
1, 0
1, 1, 0
1, 2, 3, 0
1, 3, 9, 5, 0
1, 4, 18, 20, 11, 0
1, 5, 30, 50, 55, 21, 0. - _Philippe Deléham_, Mar 18 2012
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 13;
    u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
    v[n_, x_] := 2 x*u[n - 1, x] + (x + 1)*v[n - 1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]  (* A208330 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]  (* A208331 *)

Formula

u(n,x)=u(n-1,x)+x*v(n-1,x),
v(n,x)=2x*u(n-1,x)+(x+1)*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
T(n,k) = A001045(k+1)*binomial(n-1,k). - Philippe Deléham, Mar 18 2012
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k) - T(n-2,k-1) + 2*T(n-2,k-2), T(1,0) = T(2,0) = T(2,1) = 1, T(n,k) = 0 if k<0 or if k>=n. - Philippe Deléham, Mar 18 2012