A208330 Triangle of coefficients of polynomials u(n,x) jointly generated with A208331; see the Formula section.
1, 1, 1, 1, 2, 3, 1, 3, 9, 5, 1, 4, 18, 20, 11, 1, 5, 30, 50, 55, 21, 1, 6, 45, 100, 165, 126, 43, 1, 7, 63, 175, 385, 441, 301, 85, 1, 8, 84, 280, 770, 1176, 1204, 680, 171, 1, 9, 108, 420, 1386, 2646, 3612, 3060, 1539, 341, 1, 10, 135, 600, 2310, 5292, 9030
Offset: 1
Examples
First five rows: 1 1...1 1...2...3 1...3...9....5 1...4...18...20...11 First five polynomials u(n,x): 1, 1 + x, 1 + 2x + 3x^2, 1 + 3x + 9x^2 + 5x^3, 1 + 4x + 18x^2 + 20x^3 + 11x^4. (1, 0, 0, 1, 0, 0, ...) DELTA (0, 1, 2, -2, 0, 0, ...) begins : 1 1, 0 1, 1, 0 1, 2, 3, 0 1, 3, 9, 5, 0 1, 4, 18, 20, 11, 0 1, 5, 30, 50, 55, 21, 0. - _Philippe Deléham_, Mar 18 2012
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 13; u[n_, x_] := u[n - 1, x] + x*v[n - 1, x]; v[n_, x_] := 2 x*u[n - 1, x] + (x + 1)*v[n - 1, x]; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A208330 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A208331 *)
Formula
u(n,x)=u(n-1,x)+x*v(n-1,x),
v(n,x)=2x*u(n-1,x)+(x+1)*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
T(n,k) = A001045(k+1)*binomial(n-1,k). - Philippe Deléham, Mar 18 2012
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k) - T(n-2,k-1) + 2*T(n-2,k-2), T(1,0) = T(2,0) = T(2,1) = 1, T(n,k) = 0 if k<0 or if k>=n. - Philippe Deléham, Mar 18 2012
Comments